To find the margin of error \( E \) for the population mean, we use the formula:
\[
E = Z \times \frac{\sigma}{\sqrt{n}}
\]
where:
- \( Z = 2.5758 \) (Z-score for 99% confidence level),
- \( \sigma = 6.8 \) (standard deviation),
- \( n = 5 \) (sample size).
Substituting the values:
\[
E = 2.5758 \times \frac{6.8}{\sqrt{5}} \approx 7.8332
\]
Thus, the margin of error is:
\[
\text{Margin of Error} = 7.8332 \text{ miles}
\]
The confidence interval for the population mean \( \mu \) is given by:
\[
\bar{x} \pm t \times \frac{s}{\sqrt{n}}
\]
where:
- \( \bar{x} = 18.3 \) (sample mean),
- \( t \approx 4.6 \) (t-score for 99% confidence level with \( n-1 = 4 \) degrees of freedom),
- \( s = 6.8 \) (sample standard deviation),
- \( n = 5 \) (sample size).
Calculating the confidence interval:
\[
\text{Confidence Interval} = 18.3 \pm 4.6 \times \frac{6.8}{\sqrt{5}}
\]
Calculating the lower and upper bounds:
\[
\text{Lower Bound} = 18.3 - 7.8332 \approx 10.4668
\]
\[
\text{Upper Bound} = 18.3 + 7.8332 \approx 26.1332
\]
Thus, the 99% confidence interval is:
\[
\text{Confidence Interval} = (10.4668, 26.1332) \text{ miles}
\]
We are 99% confident that the true population mean driving distance to work is between:
\[
\boxed{(10.47, 26.13)} \text{ miles}
\]
- Margin of Error: \( \boxed{7.8332} \) miles
- 99% Confidence Interval: \( \boxed{(10.47, 26.13)} \) miles