Questions: Evaluate ∬D x dA, where D is given by
x ≥ 0, y ≥ 0, x²+y²=4, x²+y²=2y.
Transcript text: Evaluate $\iint_{D} x d A$, where $D$ is given by
\[
x \geqslant 0, y \geqslant 0, \quad x^{2}+y^{2}=4, \quad x^{2}+y^{2}=2 y .
\]
Solution
Solution Steps
Solution Approach
Identify the region \( D \) bounded by the given curves.
Convert the given equations to polar coordinates for easier integration.
Set up the double integral in polar coordinates.
Evaluate the integral using Python.
Step 1: Identify the Region \( D \)
The region \( D \) is defined by the inequalities \( x \geq 0 \), \( y \geq 0 \), and the curves \( x^2 + y^2 = 4 \) and \( x^2 + y^2 = 2y \). The first curve represents a circle of radius 2 centered at the origin, while the second curve can be rewritten as \( x^2 + (y - 1)^2 = 1 \), which is a circle of radius 1 centered at \( (0, 1) \). The region \( D \) is the area in the first quadrant that lies between these two curves.
Step 2: Convert to Polar Coordinates
In polar coordinates, we have:
\( x = r \cos(\theta) \)
\( y = r \sin(\theta) \)
The equations transform as follows:
\( r^2 = 4 \) gives \( r = 2 \).
\( r^2 = 2r \sin(\theta) \) simplifies to \( r = 2 \sin(\theta) \).
Step 3: Set Up the Integral
The double integral to evaluate \( \iint_{D} x \, dA \) in polar coordinates becomes:
\[
\iint_{D} r \cos(\theta) \, r \, dr \, d\theta = \int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \sin(\theta)} r^2 \cos(\theta) \, dr \, d\theta
\]
Step 4: Evaluate the Integral
Evaluating the integral yields:
\[
\int_{0}^{\frac{\pi}{2}} \left[ \frac{r^3}{3} \cos(\theta) \right]_{0}^{2 \sin(\theta)} d\theta = \int_{0}^{\frac{\pi}{2}} \frac{(2 \sin(\theta))^3}{3} \cos(\theta) \, d\theta = \frac{8}{3} \int_{0}^{\frac{\pi}{2}} \sin^3(\theta) \cos(\theta) \, d\theta
\]
Using the identity for \( \sin^3(\theta) \) and integrating gives the final result of \( \frac{2}{3} \).
Final Answer
The value of the integral \( \iint_{D} x \, dA \) is \( \boxed{\frac{2}{3}} \).