Questions: When a 2.30-kg object is hung vertically on a certain light spring described by Hooke's law, the spring stretches 2.46 cm. (a) What is the force constant of the spring? N / m (b) If the 2.30-kg object is removed, how far will the spring stretch if a 1.15-kg block is hung on it? cm (c) How much work must an external agent do to stretch the same spring 8.40 cm from its unstretched position? J

When a 2.30-kg object is hung vertically on a certain light spring described by Hooke's law, the spring stretches 2.46 cm.
(a) What is the force constant of the spring?
N / m
(b) If the 2.30-kg object is removed, how far will the spring stretch if a 1.15-kg block is hung on it?
cm
(c) How much work must an external agent do to stretch the same spring 8.40 cm from its unstretched position?
J
Transcript text: When a $2.30-\mathrm{kg}$ object is hung vertically on a certain light spring described by Hooke's law, the spring stretches 2.46 cm . (a) What is the force constant of the spring? $\qquad$ $\mathrm{N} / \mathrm{m}$ (b) If the $2.30-\mathrm{kg}$ object is removed, how far will the spring stretch if a $1.15-\mathrm{kg}$ block is hung on it? $\qquad$ cm (c) How much work must an external agent do to stretch the same spring 8.40 cm from its unstretched position? $\qquad$ J
failed

Solution

failed
failed

Solution Steps

Step 1: Determinar la constante de fuerza del resorte

Para encontrar la constante de fuerza del resorte, utilizamos la ley de Hooke, que se expresa como:

\[ F = k \Delta x \]

donde \( F \) es la fuerza aplicada, \( k \) es la constante de fuerza del resorte, y \( \Delta x \) es la elongación del resorte.

La fuerza aplicada es el peso del objeto, que se calcula como:

\[ F = mg \]

donde \( m = 2.30 \, \text{kg} \) y \( g = 9.81 \, \text{m/s}^2 \).

\[ F = 2.30 \times 9.81 = 22.563 \, \text{N} \]

La elongación del resorte es \( \Delta x = 2.46 \, \text{cm} = 0.0246 \, \text{m} \).

Ahora, resolvemos para \( k \):

\[ k = \frac{F}{\Delta x} = \frac{22.563}{0.0246} = 917.1951 \, \text{N/m} \]

Redondeando a cuatro cifras significativas:

\[ k = 917.2 \, \text{N/m} \]

\(\boxed{k = 917.2 \, \text{N/m}}\)

Step 2: Calcular la elongación del resorte con un bloque de 1.15 kg

Usamos la misma fórmula de la ley de Hooke para encontrar la nueva elongación \( \Delta x \) cuando se cuelga un bloque de \( 1.15 \, \text{kg} \).

Primero, calculamos la nueva fuerza:

\[ F = 1.15 \times 9.81 = 11.2815 \, \text{N} \]

Luego, resolvemos para \( \Delta x \):

\[ \Delta x = \frac{F}{k} = \frac{11.2815}{917.2} = 0.0123 \, \text{m} \]

Convertimos a centímetros:

\[ \Delta x = 0.0123 \, \text{m} \times 100 = 1.23 \, \text{cm} \]

\(\boxed{\Delta x = 1.23 \, \text{cm}}\)

Step 3: Calcular el trabajo necesario para estirar el resorte 8.40 cm

El trabajo realizado para estirar un resorte se calcula usando la fórmula:

\[ W = \frac{1}{2} k (\Delta x)^2 \]

donde \( \Delta x = 8.40 \, \text{cm} = 0.0840 \, \text{m} \).

\[ W = \frac{1}{2} \times 917.2 \times (0.0840)^2 \]

\[ W = \frac{1}{2} \times 917.2 \times 0.007056 = 3.236 \, \text{J} \]

\(\boxed{W = 3.236 \, \text{J}}\)

Final Answer

(a) \(\boxed{k = 917.2 \, \text{N/m}}\)

(b) \(\boxed{\Delta x = 1.23 \, \text{cm}}\)

(c) \(\boxed{W = 3.236 \, \text{J}}\)

Was this solution helpful?
failed
Unhelpful
failed
Helpful