The total length of the track is 400 meters, consisting of two straights of 100 meters each and two curves. The length of the straights is 2 * 100 = 200 meters. Therefore, the combined length of the curves is 400 - 200 = 200 meters. Each curve is a semicircle, so the total length of the curves (200 meters) is the circumference of a full circle.
Using the formula for the circumference of a circle, \( C = 2\pi r \), we can find the radius \( r \):
\[ 2\pi r = 200 \]
\[ r = \frac{200}{2\pi} \]
\[ r \approx \frac{200}{6.2832} \]
\[ r \approx 31.83 \text{ meters} \]
The internal width of the track is twice the radius (since it spans the diameter of the circle):
\[ \text{Internal width} = 2r \]
\[ \text{Internal width} \approx 2 \times 31.83 \]
\[ \text{Internal width} \approx 63.66 \text{ meters} \]
The width of each lane is 1.5 meters. The radius for lane 2 is:
\[ r_2 = r + 1.5 \]
\[ r_2 \approx 31.83 + 1.5 \]
\[ r_2 \approx 33.33 \text{ meters} \]
The circumference for lane 2 is:
\[ C_2 = 2\pi r_2 \]
\[ C_2 \approx 2\pi \times 33.33 \]
\[ C_2 \approx 209.44 \text{ meters} \]
The head start needed for lane 2 is the difference in the lengths of the two lanes:
\[ \text{Head start} = C_2 - C \]
\[ \text{Head start} \approx 209.44 - 200 \]
\[ \text{Head start} \approx 9.44 \text{ meters} \]
Convert the internal width and head start to scientific notation:
- Internal width: \( 63.66 \text{ meters} \approx 6.37 \times 10^1 \text{ meters} \)
- Head start: \( 9.44 \text{ meters} \approx 9.44 \times 10^0 \text{ meters} \)
- Internal width: \( 6.37 \times 10^1 \text{ meters} \)
- Head start for lane 2: \( 9.44 \times 10^0 \text{ meters} \)