To find the determinant of a 3x3 matrix, we can use the rule of Sarrus or the general formula for the determinant of a 3x3 matrix. The determinant of matrix \( A \) can be calculated as follows:
\[
\operatorname{det} A = a(ei - fh) - b(di - fg) + c(dh - eg)
\]
Where the matrix \( A \) is:
\[
A = \begin{pmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{pmatrix}
\]
For the given matrix:
\[
A = \begin{pmatrix}
-3 & 4 & 2 \\
-2 & -6 & 1 \\
-1 & 4 & -2
\end{pmatrix}
\]
We can substitute the values into the formula to find the determinant.
Given the matrix \( A \):
\[
A = \begin{pmatrix}
-3 & 4 & 2 \\
-2 & -6 & 1 \\
-1 & 4 & -2
\end{pmatrix}
\]
The determinant of a 3x3 matrix \( A \) is given by:
\[
\operatorname{det} A = a(ei - fh) - b(di - fg) + c(dh - eg)
\]
For the given matrix \( A \):
\[
a = -3, \quad b = 4, \quad c = 2
\]
\[
d = -2, \quad e = -6, \quad f = 1
\]
\[
g = -1, \quad h = 4, \quad i = -2
\]
Substitute the values into the determinant formula:
\[
\operatorname{det} A = -3((-6 \cdot -2) - (1 \cdot 4)) - 4((-2 \cdot -2) - (1 \cdot -1)) + 2((-2 \cdot 4) - (-6 \cdot -1))
\]
Simplify each term inside the parentheses:
\[
\operatorname{det} A = -3((12) - (4)) - 4((4) - (-1)) + 2((-8) - (6))
\]
\[
\operatorname{det} A = -3(8) - 4(5) + 2(-14)
\]
\[
\operatorname{det} A = -24 - 20 - 28
\]
\[
\operatorname{det} A = -72
\]
The determinant of the matrix \( A \) is:
\[
\boxed{-72}
\]