To evaluate the combination \({ }_{10} \mathrm{C}_{6}\), we use the formula for combinations: \({ }_{n} \mathrm{C}_{r} = \frac{n!}{r!(n-r)!}\). For the permutation \({ }_{9} \mathrm{P}_{3}\), we use the formula for permutations: \({ }_{n} \mathrm{P}_{r} = \frac{n!}{(n-r)!}\). We will calculate these values using Python's math library, which provides a factorial function.
Step 1: Evaluate \( { }_{10} \mathrm{C}_{6} \)
To find the value of \( { }_{10} \mathrm{C}_{6} \), we use the combination formula:
\[
{ }_{n} \mathrm{C}_{r} = \frac{n!}{r!(n-r)!}
\]
Substituting \( n = 10 \) and \( r = 6 \):
\[
{ }_{10} \mathrm{C}_{6} = \frac{10!}{6!(10-6)!} = \frac{10!}{6! \cdot 4!}
\]
Calculating this gives:
\[
{ }_{10} \mathrm{C}_{6} = 210
\]
Step 2: Evaluate \( { }_{9} \mathrm{P}_{3} \)
To find the value of \( { }_{9} \mathrm{P}_{3} \), we use the permutation formula:
\[
{ }_{n} \mathrm{P}_{r} = \frac{n!}{(n-r)!}
\]
Substituting \( n = 9 \) and \( r = 3 \):
\[
{ }_{9} \mathrm{P}_{3} = \frac{9!}{(9-3)!} = \frac{9!}{6!}
\]
Calculating this gives:
\[
{ }_{9} \mathrm{P}_{3} = 504
\]
Final Answer
The values are:
\[
{ }_{10} \mathrm{C}_{6} = 210 \quad \text{and} \quad { }_{9} \mathrm{P}_{3} = 504
\]
Thus, the final answers are:
\[
\boxed{210} \quad \text{and} \quad \boxed{504}
\]