Questions: The equilibrium constant, K₀⁺ for the following reaction is 9.52 x 10⁻² at 350 K:
CH₄(g) + CCl₄(g) ⇌ 2 CH₂Cl₂(g)
[CH₄]=□ M
[CCl₄]=□ M
[CH₂Cl₂]=□ M
Transcript text: The equilibrium constant, $\mathrm{K}_{0}^{+}$for the following reaction is $9.52 \times 10^{-2}$ at 350 K :
\[
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CCl}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{~g})
\]
\[
\begin{array}{l}
{\left[\mathrm{CH}_{4}\right]=\square \mathrm{M}} \\
{\left[\mathrm{CCl}_{4}\right]=\square \mathrm{M}} \\
{\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right]=\square \mathrm{M}}
\end{array}
\]
Solution
Solution Steps
Step 1: Understanding the Equilibrium Constant Expression
The equilibrium constant expression for the given reaction is:
\[
\mathrm{CH}_{4}(\mathrm{~g}) + \mathrm{CCl}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{~g})
\]
The equilibrium constant \( K_0^+ \) is given by:
\[
K_0^+ = \frac{[\mathrm{CH}_2\mathrm{Cl}_2]^2}{[\mathrm{CH}_4][\mathrm{CCl}_4]}
\]
Step 2: Substituting the Given Values
We are given:
\[
K_0^+ = 9.52 \times 10^{-2}
\]
We need to find the concentrations of \(\mathrm{CH}_4\), \(\mathrm{CCl}_4\), and \(\mathrm{CH}_2\mathrm{Cl}_2\) that satisfy this equilibrium constant.
Step 3: Solving for Concentrations
Since the problem does not provide specific concentrations, we can express the concentrations in terms of variables. Let:
\[
[\mathrm{CH}_4] = a \quad \text{M}
\]
\[
[\mathrm{CCl}_4] = b \quad \text{M}
\]
\[
[\mathrm{CH}_2\mathrm{Cl}_2] = c \quad \text{M}
\]
The equilibrium constant expression in terms of the concentrations is:
\[
\boxed{9.52 \times 10^{-2} = \frac{[\mathrm{CH}_2\mathrm{Cl}_2]^2}{[\mathrm{CH}_4][\mathrm{CCl}_4]}}
\]