To find the estimated regression equation, we first calculate the means of \( t \) and \( Y \):
\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 2.5
\]
\[
\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = 8.25
\]
Next, we compute the correlation coefficient \( r \):
\[
r = 0.992
\]
We then calculate the numerator and denominator for the slope \( \beta \):
\[
\text{Numerator for } \beta: \sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y} = 97 - 4 \cdot 2.5 \cdot 8.25 = 14.5
\]
\[
\text{Denominator for } \beta: \sum_{i=1}^{n} x_i^2 - n \bar{x}^2 = 30 - 4 \cdot (2.5)^2 = 5.0
\]
Thus, the slope \( \beta \) is calculated as:
\[
\beta = \frac{14.5}{5.0} = 2.9
\]
The intercept \( \alpha \) is given by:
\[
\alpha = \bar{y} - \beta \bar{x} = 8.25 - 2.9 \cdot 2.5 = 1.0
\]
The estimated regression equation is:
\[
\widehat{y} = 1.0 + 2.9t
\]
The mean of \( t \) is:
\[
\mu = \frac{\sum_{i=1}^N x_i}{N} = \frac{10}{4} = 2.5
\]
The variance \( \sigma^2 \) is calculated as:
\[
\sigma^2 = \frac{\sum (x_i - \mu)^2}{n-1} = 1.667
\]
Thus, the standard deviation of \( t \) is:
\[
\text{Standard Deviation} = \sqrt{1.667} = 1.291
\]
Using the regression equation, we predict \( Y \) at \( t = 6 \):
\[
Y_{\text{pred}} = \alpha + \beta \cdot t_{\text{pred}} = 1.0 + 2.9 \cdot 6 = 18.4
\]
The standard error of the estimate is calculated as follows:
\[
\text{Standard Error} = 0.5916
\]
To calculate the prediction interval, we first find the critical value \( t \) for a 95% confidence level with \( n-2 \) degrees of freedom:
\[
t_{\text{value}} = t_{0.975, n-2}
\]
The margin of error is given by:
\[
\text{Margin of Error} = t_{\text{value}} \cdot \text{Standard Error} \cdot \sqrt{1 + \frac{1}{n} + \frac{(t_{\text{pred}} - \mu)^2}{(n-1) \cdot \sigma^2}}
\]
Calculating the lower and upper bounds of the prediction interval:
\[
\text{Lower Bound} = Y_{\text{pred}} - \text{Margin of Error} = 13.5037
\]
\[
\text{Upper Bound} = Y_{\text{pred}} + \text{Margin of Error} = 23.2963
\]
- Blank 1 (alpha): \( \boxed{1.0} \)
- Blank 2 (beta): \( \boxed{2.9} \)
- Blank 3 (Lower Bound): \( \boxed{13.504} \)
- Blank 4 (Upper Bound): \( \boxed{23.296} \)