From the graph, we can see that the velocity \( v_x \) changes linearly with time \( t \). The slope of the line gives the acceleration \( a_x \).
\[ a_x = \frac{\Delta v_x}{\Delta t} = \frac{4 \, \text{m/s} - (-4 \, \text{m/s})}{3 \, \text{s} - 0 \, \text{s}} = \frac{8 \, \text{m/s}}{3 \, \text{s}} = \frac{8}{3} \, \text{m/s}^2 \]
Using Newton's second law, \( F = ma \), we can find the net force \( F_x \) acting on the disk in the x-direction.
\[ F_x = m \cdot a_x = 4.00 \, \text{kg} \cdot \frac{8}{3} \, \text{m/s}^2 = \frac{32}{3} \, \text{N} \]
Given that \( \vec{F}_1 \) is in the positive x-direction with a magnitude of 7.70 N, and \( \vec{F}_2 \) has a magnitude of 9.10 N, we need to find the angle \( \theta \) between \( \vec{F}_1 \) and \( \vec{F}_2 \).
The net force in the x-direction is the sum of the x-components of \( \vec{F}_1 \) and \( \vec{F}_2 \):
\[ F_x = F_1 + F_2 \cos(\theta) \]
Substituting the known values:
\[ \frac{32}{3} \, \text{N} = 7.70 \, \text{N} + 9.10 \, \text{N} \cos(\theta) \]
Solving for \( \cos(\theta) \):
\[ \frac{32}{3} - 7.70 = 9.10 \cos(\theta) \]
\[ \frac{32}{3} - \frac{23.1}{3} = 9.10 \cos(\theta) \]
\[ \frac{8.9}{3} = 9.10 \cos(\theta) \]
\[ \cos(\theta) = \frac{8.9}{3 \cdot 9.10} \]
\[ \cos(\theta) = \frac{8.9}{27.3} \]
\[ \cos(\theta) \approx 0.326 \]
Finally, finding the angle \( \theta \):
\[ \theta = \cos^{-1}(0.326) \approx 71.0^\circ \]
The angle between the constant directions of forces \( \vec{F}_1 \) and \( \vec{F}_2 \) is approximately \( 71.0^\circ \).