The expected value \( E(X) \) of a discrete random variable is calculated using the formula:
\[ E(X) = \sum (x \cdot P(X = x)) \]
For the given data:
\[ E(X) = (-6 \times 0.3) + (-5 \times 0.1) + (-4 \times 0.1) + (-3 \times 0.1) + (-2 \times 0.4) \]
Calculating each term:
\[ E(X) = -1.8 - 0.5 - 0.4 - 0.3 - 0.8 = -3.8 \]
Thus, the expected value is:
\[ E(X) = -3.8 \]
The variance \( \sigma^2 \) is calculated using the formula:
\[ \sigma^2 = \sum ((x - E(X))^2 \cdot P(X = x)) \]
Substituting \( E(X) = -3.8 \):
\[ \sigma^2 = (-6 - -3.8)^2 \times 0.3 + (-5 - -3.8)^2 \times 0.1 + (-4 - -3.8)^2 \times 0.1 + (-3 - -3.8)^2 \times 0.1 + (-2 - -3.8)^2 \times 0.4 \]
\[ \sigma^2 = (2.2)^2 \times 0.3 + (1.2)^2 \times 0.1 + (0.2)^2 \times 0.1 + (0.8)^2 \times 0.1 + (1.8)^2 \times 0.4 \]
\[ = 4.84 \times 0.3 + 1.44 \times 0.1 + 0.04 \times 0.1 + 0.64 \times 0.1 + 3.24 \times 0.4 \]
\[ = 1.452 + 0.144 + 0.004 + 0.064 + 1.296 = 3.0 \]
Thus, the variance is:
\[ \sigma^2 = 3.0 \]
The standard deviation \( \sigma \) is the square root of the variance:
\[ \sigma = \sqrt{\sigma^2} = \sqrt{3.0} \approx 1.732 \]
Rounding to one decimal place gives:
\[ \sigma \approx 1.7 \]
The expected value \( E(X) \) is:
\[ \boxed{-3.8} \]
The variance \( \sigma^2 \) is:
\[ \boxed{3.0} \]
The standard deviation \( \sigma \) is:
\[ \boxed{1.7} \]
Oops, Image-based questions are not yet availableUse Solvely.ai for full features.
Failed. You've reached the daily limit for free usage.Please come back tomorrow or visit Solvely.ai for additional homework help.