Given that \(OA \parallel CB\) and \(OA = 2\), \(OB = 1\), and \(\overrightarrow{OA} = \mathbf{a}\), we can deduce that \(\overrightarrow{CB}\) is parallel to \(\overrightarrow{OA}\) and has the same magnitude as \(\overrightarrow{OA}\).
Since \(OA = 2\) and \(OB = 1\), the vector \(\overrightarrow{CB}\) can be expressed as:
\[
\overrightarrow{CB} = -\overrightarrow{OA} = -\mathbf{a}
\]
Given that \(\cos \angle AOB = \frac{2}{3}\), \(\overrightarrow{OA} = \mathbf{a}\), and \(\overrightarrow{OB} = \mathbf{b}\), we need to find \(\overrightarrow{OC}\).
Since \(OA \perp OC\), \(\overrightarrow{OC}\) is perpendicular to \(\overrightarrow{OA}\). Using the given information, we can use the dot product to find the relationship between \(\mathbf{a}\) and \(\mathbf{b}\):
\[
\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \angle AOB = 2 \cdot 1 \cdot \frac{2}{3} = \frac{4}{3}
\]
Since \(OA \perp OC\), \(\overrightarrow{OC}\) can be expressed as:
\[
\overrightarrow{OC} = \mathbf{b} - \mathbf{a}
\]
In Figure II, \(AD \parallel BO\) and \(OD \perp DA\). Given \(\overrightarrow{OA} = \mathbf{a}\) and \(\overrightarrow{OB} = \mathbf{b}\), we need to find \(\overrightarrow{OD}\).
Since \(AD \parallel BO\), \(\overrightarrow{AD}\) is parallel to \(\overrightarrow{BO}\). Given that \(OD \perp DA\), \(\overrightarrow{OD}\) is perpendicular to \(\overrightarrow{DA}\).
Using the given information, we can express \(\overrightarrow{OD}\) as:
\[
\overrightarrow{OD} = \mathbf{b} - \mathbf{a}
\]
- \(\overrightarrow{CB} = -\mathbf{a}\)
- \(\overrightarrow{OC} = \mathbf{b} - \mathbf{a}\)
- \(\overrightarrow{OD} = \mathbf{b} - \mathbf{a}\)