First, we need to convert the mass of each compound to moles using their molar masses:
- Molar mass of \(\mathrm{HNO}_3\) = 63.01 g/mol
- Molar mass of \(\mathrm{NO}\) = 30.01 g/mol
- Molar mass of \(\mathrm{NO}_2\) = 46.01 g/mol
- Molar mass of \(\mathrm{H}_2\mathrm{O}\) = 18.02 g/mol
Calculate moles:
\[
\text{Moles of } \mathrm{HNO}_3 = \frac{23.5 \, \text{g}}{63.01 \, \text{g/mol}} = 0.3730 \, \text{mol}
\]
\[
\text{Moles of } \mathrm{NO} = \frac{10.2 \, \text{g}}{30.01 \, \text{g/mol}} = 0.3399 \, \text{mol}
\]
\[
\text{Moles of } \mathrm{NO}_2 = \frac{6.8 \, \text{g}}{46.01 \, \text{g/mol}} = 0.1478 \, \text{mol}
\]
\[
\text{Moles of } \mathrm{H}_2\mathrm{O} = \frac{238.1 \, \text{g}}{18.02 \, \text{g/mol}} = 13.21 \, \text{mol}
\]
Next, calculate the concentration of each compound by dividing the moles by the volume of the reaction vessel (2.7 L):
\[
[\mathrm{HNO}_3] = \frac{0.3730 \, \text{mol}}{2.7 \, \text{L}} = 0.1381 \, \text{M}
\]
\[
[\mathrm{NO}] = \frac{0.3399 \, \text{mol}}{2.7 \, \text{L}} = 0.1259 \, \text{M}
\]
\[
[\mathrm{NO}_2] = \frac{0.1478 \, \text{mol}}{2.7 \, \text{L}} = 0.05474 \, \text{M}
\]
\[
[\mathrm{H}_2\mathrm{O}] = \frac{13.21 \, \text{mol}}{2.7 \, \text{L}} = 4.889 \, \text{M}
\]
The equilibrium constant expression for the reaction is:
\[
K_c = \frac{[\mathrm{NO}_2]^3 [\mathrm{H}_2\mathrm{O}]}{[\mathrm{HNO}_3]^2 [\mathrm{NO}]}
\]
Substitute the concentrations into the equilibrium expression:
\[
K_c = \frac{(0.05474)^3 \times 4.889}{(0.1381)^2 \times 0.1259}
\]
Calculate the value of \(K_c\):
\[
K_c = \frac{(0.05474)^3 \times 4.889}{(0.1381)^2 \times 0.1259} = \frac{0.0001641 \times 4.889}{0.01907 \times 0.1259} = \frac{0.0008023}{0.002400} = 0.3343
\]
The equilibrium constant \(K_c\) for the reaction is:
\[
\boxed{0.33}
\]