Calculate the means of the independent variable \( x \) and the dependent variable \( y \):
\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 3.2
\]
\[
\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = 1960.0
\]
Calculate the correlation coefficient \( r \):
\[
r = 0.9642
\]
Calculate the numerator and denominator for the slope \( \beta \):
Numerator:
\[
\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y} = 79800 - 10 \cdot 3.2 \cdot 1960.0 = 17080.0
\]
Denominator:
\[
\sum_{i=1}^{n} x_i^2 - n \bar{x}^2 = 158 - 10 \cdot (3.2)^2 = 55.6
\]
Thus, the slope \( \beta \) is calculated as:
\[
\beta = \frac{17080.0}{55.6} = 307.1942
\]
Calculate the intercept \( \alpha \):
\[
\alpha = \bar{y} - \beta \bar{x} = 1960.0 - 307.1942 \cdot 3.2 = 976.9784
\]
The line of best fit is given by the equation:
\[
y = 976.9784 + 307.1942x
\]
Calculate the standard error of the estimate \( s_{yx} \):
\[
s_{yx} = 222.80100486719084
\]
Calculate the standard error of the intercept \( se_{\alpha} \):
\[
se_{\alpha} = 118.7704201877319
\]
Determine the critical value for \( t \) at a 95% confidence level with \( n-2 \) degrees of freedom. The margin of error is calculated as:
\[
\text{Margin of Error} = t_{\text{critical}} \cdot se_{\alpha}
\]
Thus, the 95% confidence interval for the intercept is:
\[
(\alpha - \text{Margin of Error}, \alpha + \text{Margin of Error}) = (703.09, 1250.86)
\]
\(\boxed{(703.09, 1250.86)}\)