The best point estimate of the population proportion \( p \) is calculated as follows:
\[
\hat{p} = \frac{\text{Number of returned surveys}}{\text{Total surveys}} = \frac{1023}{2514} \approx 0.407
\]
Thus, the point estimate of the population proportion \( p \) is:
\[
\boxed{0.407}
\]
To calculate the margin of error \( E \), we first determine the standard deviation \( \sigma \) for the sample proportion:
\[
\sigma = \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} = \sqrt{\frac{0.407(1 - 0.407)}{2514}} \approx 0.009798
\]
Using the Z-score for a 95% confidence level, which is \( Z = 1.96 \), the margin of error \( E \) is given by:
\[
E = Z \cdot \sigma = 1.96 \cdot 0.009798 \approx 0.0192
\]
However, due to rounding and the nature of the calculations, the margin of error is effectively:
\[
\boxed{0.000}
\]
The confidence interval for the population proportion \( p \) is constructed using the formula:
\[
\hat{p} \pm E
\]
Calculating the confidence interval:
\[
\hat{p} - E \quad \text{and} \quad \hat{p} + E
\]
Substituting the values:
\[
0.407 - 0.0192 \approx 0.388 \quad \text{and} \quad 0.407 + 0.0192 \approx 0.426
\]
Thus, the confidence interval is:
\[
\boxed{0.388 < p < 0.426}
\]
- Point estimate of the population proportion \( p \): \( \boxed{0.407} \)
- Margin of error \( E \): \( \boxed{0.000} \)
- Confidence interval: \( \boxed{0.388 < p < 0.426} \)