Questions: Test Yourself: Find the pH if we add another 1.00 g of tris hydrochloride. [B]=12.43 g / L / 121.14 g / mol = 0.1026 M [BH+]=4.67 g / L / 157.59 g / mol = 0.0296 M Henderson-Hasselbalch Equation The Henderson-Hasselbalch equation is a rearranged form of the Ka equilibrium expression. Ka=[H+][A-]/[HA] Henderson-Hasselbalch equation for an acid: HA ↔ H+ + A- pH = pKa + log ([A-]/[HA]) Henderson-Hasselbalch equation for a base: Ka=Kw / Kb BH+ ↔ B + H+ pH = pKa + log ([B]/[BH+]) Note: If activities are included, pH = pKa + log ([A-] γA-]/[HA] γHA) pKa applies to this acid

Test Yourself: Find the pH if we add another 1.00 g of tris hydrochloride.
[B]=12.43 g / L / 121.14 g / mol = 0.1026 M [BH+]=4.67 g / L / 157.59 g / mol = 0.0296 M

Henderson-Hasselbalch Equation

The Henderson-Hasselbalch equation is a rearranged form of the Ka equilibrium expression.
Ka=[H+][A-]/[HA]

Henderson-Hasselbalch equation for an acid:
HA ↔ H+ + A-
pH = pKa + log ([A-]/[HA])

Henderson-Hasselbalch equation for a base:
Ka=Kw / Kb
BH+ ↔ B + H+
pH = pKa + log ([B]/[BH+])

Note: If activities are included, pH = pKa + log ([A-] γA-]/[HA] γHA)
pKa applies to this acid
Transcript text: Test Yourself: Find the pH if we add another 1.00 g of tris hydrochloride. \[ [B]=\frac{12.43 \mathrm{~g} / \mathrm{L}}{121.14 \mathrm{~g} / \mathrm{mol}}=0.1026 \mathrm{M}\left[\mathrm{BH}^{+}\right]=\frac{4.67 \mathrm{~g} / \mathrm{L}}{157.59 \mathrm{~g} / \mathrm{mol}}=0.0296 \mathrm{M} \] Henderson-Hasselbalch Equation The Henderson-Hasselbalch equation is a rearranged form of the $K_{\mathrm{a}}$ equilibrium expression. \[ K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \] Henderson-Hasselbalch equation for an acid: \[ \begin{array}{c} \mathrm{HA} \stackrel{K_{\mathrm{a}}}{\rightleftharpoons} \mathrm{H}^{+}+\mathrm{A}^{-} \\ \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \end{array} \] Henderson-Hasselbalch equation for a base: \[ \begin{array}{c} K_{\mathrm{a}}=K_{\mathrm{w}} / K_{\mathrm{b}} \\ \mathrm{BH}^{+} \leftrightharpoons \mathrm{B}+\mathrm{H}^{+} \end{array} \] \[ \mathbf{p H}=\mathbf{p} \boldsymbol{K}_{\mathrm{a}}+\log \frac{[\mathrm{B}]}{\left[\mathbf{B H}^{+}\right]} \] Note: If activities are included, $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right] \gamma_{\mathrm{A}^{-}}}{[\mathrm{HA}] \gamma_{\mathrm{HA}}}$ $\mathrm{p} K_{\mathrm{a}}$ applies to this acid
failed

Solution

failed
failed

Solution Steps

Step 1: Calculate the new concentration of \(\mathrm{BH}^{+}\)

Given:

  • Initial concentration of \(\mathrm{BH}^{+}\) is \(0.0296 \, \mathrm{M}\)
  • Additional \(1.00 \, \mathrm{g}\) of tris hydrochloride is added
  • Molar mass of tris hydrochloride is \(157.59 \, \mathrm{g/mol}\)

First, calculate the moles of tris hydrochloride added: \[ \text{Moles of tris hydrochloride} = \frac{1.00 \, \mathrm{g}}{157.59 \, \mathrm{g/mol}} = 0.00635 \, \mathrm{mol} \]

Assuming the volume of the solution remains constant, the new concentration of \(\mathrm{BH}^{+}\) is: \[ [\mathrm{BH}^{+}]_{\text{new}} = 0.0296 \, \mathrm{M} + 0.00635 \, \mathrm{mol/L} = 0.03595 \, \mathrm{M} \]

Step 2: Use the Henderson-Hasselbalch equation

Given:

  • Concentration of \(\mathrm{B}\) is \(0.1026 \, \mathrm{M}\)
  • New concentration of \(\mathrm{BH}^{+}\) is \(0.03595 \, \mathrm{M}\)
  • \(\mathrm{p}K_{\mathrm{a}}\) is not provided, but we can assume it is known for the calculation

The Henderson-Hasselbalch equation for a base is: \[ \mathrm{pH} = \mathrm{p}K_{\mathrm{a}} + \log \frac{[\mathrm{B}]}{[\mathrm{BH}^{+}]} \]

Step 3: Substitute the values into the equation

Substitute the given concentrations into the equation: \[ \mathrm{pH} = \mathrm{p}K_{\mathrm{a}} + \log \frac{0.1026}{0.03595} \]

Step 4: Calculate the ratio and the pH

Calculate the ratio: \[ \frac{0.1026}{0.03595} \approx 2.853 \]

Now, calculate the pH: \[ \mathrm{pH} = \mathrm{p}K_{\mathrm{a}} + \log 2.853 \approx \mathrm{p}K_{\mathrm{a}} + 0.456 \]

Final Answer

\[ \boxed{\mathrm{pH} = \mathrm{p}K_{\mathrm{a}} + 0.456} \]

Was this solution helpful?
failed
Unhelpful
failed
Helpful