Questions: Test Yourself: Find the pH if we add another 1.00 g of tris hydrochloride.
[B]=12.43 g / L / 121.14 g / mol = 0.1026 M [BH+]=4.67 g / L / 157.59 g / mol = 0.0296 M
Henderson-Hasselbalch Equation
The Henderson-Hasselbalch equation is a rearranged form of the Ka equilibrium expression.
Ka=[H+][A-]/[HA]
Henderson-Hasselbalch equation for an acid:
HA ↔ H+ + A-
pH = pKa + log ([A-]/[HA])
Henderson-Hasselbalch equation for a base:
Ka=Kw / Kb
BH+ ↔ B + H+
pH = pKa + log ([B]/[BH+])
Note: If activities are included, pH = pKa + log ([A-] γA-]/[HA] γHA)
pKa applies to this acid
Transcript text: Test Yourself: Find the pH if we add another 1.00 g of tris hydrochloride.
\[
[B]=\frac{12.43 \mathrm{~g} / \mathrm{L}}{121.14 \mathrm{~g} / \mathrm{mol}}=0.1026 \mathrm{M}\left[\mathrm{BH}^{+}\right]=\frac{4.67 \mathrm{~g} / \mathrm{L}}{157.59 \mathrm{~g} / \mathrm{mol}}=0.0296 \mathrm{M}
\]
Henderson-Hasselbalch Equation
The Henderson-Hasselbalch equation is a rearranged form of the $K_{\mathrm{a}}$ equilibrium expression.
\[
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\]
Henderson-Hasselbalch equation for an acid:
\[
\begin{array}{c}
\mathrm{HA} \stackrel{K_{\mathrm{a}}}{\rightleftharpoons} \mathrm{H}^{+}+\mathrm{A}^{-} \\
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{array}
\]
Henderson-Hasselbalch equation for a base:
\[
\begin{array}{c}
K_{\mathrm{a}}=K_{\mathrm{w}} / K_{\mathrm{b}} \\
\mathrm{BH}^{+} \leftrightharpoons \mathrm{B}+\mathrm{H}^{+}
\end{array}
\]
\[
\mathbf{p H}=\mathbf{p} \boldsymbol{K}_{\mathrm{a}}+\log \frac{[\mathrm{B}]}{\left[\mathbf{B H}^{+}\right]}
\]
Note: If activities are included, $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right] \gamma_{\mathrm{A}^{-}}}{[\mathrm{HA}] \gamma_{\mathrm{HA}}}$
$\mathrm{p} K_{\mathrm{a}}$ applies to this acid
Solution
Solution Steps
Step 1: Calculate the new concentration of \(\mathrm{BH}^{+}\)
Given:
Initial concentration of \(\mathrm{BH}^{+}\) is \(0.0296 \, \mathrm{M}\)
Additional \(1.00 \, \mathrm{g}\) of tris hydrochloride is added
Molar mass of tris hydrochloride is \(157.59 \, \mathrm{g/mol}\)
First, calculate the moles of tris hydrochloride added:
\[
\text{Moles of tris hydrochloride} = \frac{1.00 \, \mathrm{g}}{157.59 \, \mathrm{g/mol}} = 0.00635 \, \mathrm{mol}
\]
Assuming the volume of the solution remains constant, the new concentration of \(\mathrm{BH}^{+}\) is:
\[
[\mathrm{BH}^{+}]_{\text{new}} = 0.0296 \, \mathrm{M} + 0.00635 \, \mathrm{mol/L} = 0.03595 \, \mathrm{M}
\]
Step 2: Use the Henderson-Hasselbalch equation
Given:
Concentration of \(\mathrm{B}\) is \(0.1026 \, \mathrm{M}\)
New concentration of \(\mathrm{BH}^{+}\) is \(0.03595 \, \mathrm{M}\)
\(\mathrm{p}K_{\mathrm{a}}\) is not provided, but we can assume it is known for the calculation
The Henderson-Hasselbalch equation for a base is:
\[
\mathrm{pH} = \mathrm{p}K_{\mathrm{a}} + \log \frac{[\mathrm{B}]}{[\mathrm{BH}^{+}]}
\]
Step 3: Substitute the values into the equation
Substitute the given concentrations into the equation:
\[
\mathrm{pH} = \mathrm{p}K_{\mathrm{a}} + \log \frac{0.1026}{0.03595}
\]
Step 4: Calculate the ratio and the pH
Calculate the ratio:
\[
\frac{0.1026}{0.03595} \approx 2.853
\]