Questions: 7. If f(x)=sin x+tan x+(x^3/3), then f'(x)=
A. -cos x-csc ^2 x+3 x^2
B. cos x+sec ^2 x+x^2
C. cos x-csc ^2 x-3 x^2
D. cos x+tan x sec x+x^2
8. If f(x)=cot x tan x, then f'(x)=
A. cot x sec ^2 x-tan x csc ^2 x
B. 1
C. -1
D. 0
9. If f(x)=(x^2-3 x) sec x, then f'(x)=
A. sec x[(x^2-3 x) tan x+(2 x-3)]
B. sec x[(x^2-3 x) tan x-(2 x-3)]
C. (2 x-3) sec x tan x+(x^2-3 x) sec x
D. (x^2-3 x) tan x+sec x(2 x-3)
Transcript text: 7. If $f(x)=\sin x+\tan x+\frac{x^{3}}{3}$, then $f^{\prime}(x)=$
A. $-\cos x-\csc ^{2} x+3 x^{2}$
B. $\cos x+\sec ^{2} x+x^{2}$
C. $\cos x-\csc ^{2} x-3 x^{2}$
D. $\cos x+\tan x \sec x+x^{2}$
8. If $f(x)=\cot x \tan x$, then $f^{\prime}(x)=$
A. $\cot x \sec ^{2} x-\tan x \csc ^{2} x$
B. 1
C. -1
D. 0
9. If $f(x)=\left(x^{2}-3 x\right) \sec x$, then $f^{\prime}(x)=$
A. $\sec x\left[\left(x^{2}-3 x\right) \tan x+(2 x-3)\right]$
B. $\sec x\left[\left(x^{2}-3 x\right) \tan x-(2 x-3)\right]$
C. $(2 x-3) \sec x \tan x+\left(x^{2}-3 x\right) \sec x$
D. $\left(x^{2}-3 x\right) \tan x+\sec x(2 x-3)$
Solution
Solution Steps
Solution Approach
To find the derivative \( f'(x) \) of the function \( f(x) = \sin x + \tan x + \frac{x^3}{3} \), apply the derivative rules for each term separately: the derivative of \(\sin x\) is \(\cos x\), the derivative of \(\tan x\) is \(\sec^2 x\), and the derivative of \(\frac{x^3}{3}\) is \(x^2\).
For the function \( f(x) = \cot x \tan x \), simplify the expression first, as \(\cot x \tan x = 1\). The derivative of a constant is 0.
To find the derivative \( f'(x) \) of the function \( f(x) = (x^2 - 3x) \sec x \), use the product rule. The product rule states that the derivative of two functions \( u(x) \) and \( v(x) \) is \( u'(x)v(x) + u(x)v'(x) \). Here, \( u(x) = x^2 - 3x \) and \( v(x) = \sec x \).
Step 1: Derivative of \( f(x) = \sin x + \tan x + \frac{x^3}{3} \)
To find the derivative \( f'(x) \), we differentiate each term:
\[
f'(x) = \frac{d}{dx}(\sin x) + \frac{d}{dx}(\tan x) + \frac{d}{dx}\left(\frac{x^3}{3}\right)
\]
Calculating each derivative gives:
\[
f'(x) = \cos x + \sec^2 x + x^2
\]
Thus, the expression simplifies to:
\[
f'(x) = x^2 + \cos x + \sec^2 x
\]
Step 2: Derivative of \( f(x) = \cot x \tan x \)
First, we simplify \( f(x) \):
\[
f(x) = \cot x \tan x = 1
\]
The derivative of a constant is:
\[
f'(x) = 0
\]
Step 3: Derivative of \( f(x) = (x^2 - 3x) \sec x \)
Using the product rule:
\[
f'(x) = \frac{d}{dx}(x^2 - 3x) \cdot \sec x + (x^2 - 3x) \cdot \frac{d}{dx}(\sec x)
\]
Calculating the derivatives:
\[
\frac{d}{dx}(x^2 - 3x) = 2x - 3
\]
\[
\frac{d}{dx}(\sec x) = \sec x \tan x
\]
Thus, we have:
\[
f'(x) = (2x - 3) \sec x + (x^2 - 3x) \sec x \tan x
\]
Final Answer
For the derivatives, we have:
\( f'(x) \) for question 7: \( \boxed{x^2 + \cos x + \sec^2 x} \)
\( f'(x) \) for question 8: \( \boxed{0} \)
\( f'(x) \) for question 9: \( \boxed{(2x - 3) \sec x + (x^2 - 3x) \sec x \tan x} \)