To determine which combination of matrices \( A \) and \( B \) results in the system \( AX = B \) having no solution, we need to check if the matrix \( A \) is singular (i.e., its determinant is zero) and if the augmented matrix \([A|B]\) is inconsistent. This can be done by calculating the determinant of \( A \) and checking the rank of \( A \) and the augmented matrix \([A|B]\).
We are given four options for matrices \( A \) and \( B \):
\[
A_1 = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 3 \\ 14 \end{bmatrix}
\]
\[
A_2 = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}
\]
\[
A_3 = \begin{bmatrix} 1 & 2 \\ 5 & 3 \end{bmatrix}, \quad B_3 = \begin{bmatrix} 4 \\ 5 \end{bmatrix}
\]
\[
A_4 = \begin{bmatrix} 3 & 4 \\ 8 & 12 \end{bmatrix}, \quad B_4 = \begin{bmatrix} 7 \\ 3 \end{bmatrix}
\]
To determine if the system \( AX = B \) has no solution, we first check if the determinant of \( A \) is zero (i.e., \( A \) is singular).
\[
\text{det}(A_1) = \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 2 = 0
\]
\[
\text{det}(A_2) = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = 1 \cdot 3 - 2 \cdot 2 = -1
\]
\[
\text{det}(A_3) = \begin{vmatrix} 1 & 2 \\ 5 & 3 \end{vmatrix} = 1 \cdot 3 - 2 \cdot 5 = -7
\]
\[
\text{det}(A_4) = \begin{vmatrix} 3 & 4 \\ 8 & 12 \end{vmatrix} = 3 \cdot 12 - 4 \cdot 8 = 36 - 32 = 4
\]
Since \( \text{det}(A_1) = 0 \), \( A_1 \) is singular. We need to check the rank of \( A_1 \) and the augmented matrix \([A_1|B_1]\).
\[
\text{rank}(A_1) = 1, \quad \text{rank}([A_1|B_1]) = 2
\]
Since the ranks are different, the system \( A_1 X = B_1 \) has no solution.
For the other matrices, since their determinants are non-zero, they are non-singular, and thus the systems \( A_2 X = B_2 \), \( A_3 X = B_3 \), and \( A_4 X = B_4 \) have solutions.
The option that produces no solution is:
\[
\boxed{\text{A}}
\]