\[
\boxed{\frac{dy}{dx} = \frac{3y - 2x}{8y - 3x}}
\]
For the tangent line to be horizontal, \(\frac{dy}{dx} = 0\):
\[ \frac{3y - 2x}{8y - 3x} = 0 \]
This implies:
\[ 3y - 2x = 0 \]
\[ 3y = 2x \]
\[ y = \frac{2}{3}x \]
Given \(x = 3\):
\[ y = \frac{2}{3} \cdot 3 = 2 \]
So, the point \(P\) is \((3, 2)\).
\[
\boxed{(3, 2)}
\]
First, we need to find \(\frac{d^2y}{dx^2}\). Differentiate \(\frac{dy}{dx} = \frac{3y - 2x}{8y - 3x}\) implicitly with respect to \(x\):
Let \(u = 3y - 2x\) and \(v = 8y - 3x\):
\[ \frac{dy}{dx} = \frac{u}{v} \]
Using the quotient rule:
\[ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \]
Calculate \(\frac{du}{dx}\) and \(\frac{dv}{dx}\):
\[ \frac{du}{dx} = 3 \frac{dy}{dx} - 2 \]
\[ \frac{dv}{dx} = 8 \frac{dy}{dx} - 3 \]
Substitute \(\frac{dy}{dx} = \frac{3y - 2x}{8y - 3x}\) at \((3, 2)\):
\[ \frac{dy}{dx} \bigg|_{(3, 2)} = \frac{3(2) - 2(3)}{8(2) - 3(3)} = \frac{6 - 6}{16 - 9} = 0 \]
So:
\[ \frac{du}{dx} = 3(0) - 2 = -2 \]
\[ \frac{dv}{dx} = 8(0) - 3 = -3 \]
Now, substitute back into the quotient rule:
\[ \frac{d^2y}{dx^2} = \frac{v(-2) - u(-3)}{v^2} \]
At \((3, 2)\):
\[ u = 3(2) - 2(3) = 0 \]
\[ v = 8(2) - 3(3) = 16 - 9 = 7 \]
So:
\[ \frac{d^2y}{dx^2} = \frac{7(-2) - 0(-3)}{7^2} = \frac{-14}{49} = -\frac{2}{7} \]
Since \(\frac{d^2y}{dx^2} < 0\), the curve has a local maximum at point \(P\).
\[
\boxed{\frac{d^2y}{dx^2} = -\frac{2}{7}, \text{ local maximum}}
\]