To solve this problem, we need to perform a linear regression analysis where the height of the president is the predictor variable (x) and the height of the opponent is the response variable (y). The steps are as follows:
- Import the necessary libraries.
- Define the data for the heights of presidents and opponents.
- Use a linear regression model to fit the data.
- Extract the regression equation coefficients (slope and intercept).
- Predict the opponent's height given a president's height of 177 cm.
- Compare the predicted height to the actual height of 183 cm.
First, we need to calculate the means of the heights of the presidents and the opponents.
Given data:
- Presidents' heights: \(183, 188, 183, 177, 192, 191, 178, 188, 175\)
- Opponents' heights: \(185, 173, 182, 183, 180, 169, 180, 175, 173\)
Calculate the mean of the presidents' heights (\(\bar{x}\)):
\[
\bar{x} = \frac{183 + 188 + 183 + 177 + 192 + 191 + 178 + 188 + 175}{9} = \frac{1655}{9} \approx 183.8889
\]
Calculate the mean of the opponents' heights (\(\bar{y}\)):
\[
\bar{y} = \frac{185 + 173 + 182 + 183 + 180 + 169 + 180 + 175 + 173}{9} = \frac{1600}{9} \approx 177.7778
\]
Next, we calculate the slope (\(b\)) of the regression line using the formula:
\[
b = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}
\]
Calculate the numerator:
\[
\sum (x_i - \bar{x})(y_i - \bar{y}) = (183 - 183.8889)(185 - 177.7778) + (188 - 183.8889)(173 - 177.7778) + \ldots + (175 - 183.8889)(173 - 177.7778)
\]
\[
= (-0.8889 \times 7.2222) + (4.1111 \times -4.7778) + (-0.8889 \times 4.2222) + (-6.8889 \times 5.2222) + (8.1111 \times 2.2222) + (7.1111 \times -8.7778) + (-5.8889 \times 2.2222) + (4.1111 \times -2.7778) + (-8.8889 \times -4.7778)
\]
\[
= -6.4197 - 19.6395 - 3.7555 - 35.9605 + 18.0247 - 62.4444 - 13.0889 - 11.4167 + 42.4444
\]
\[
= -92.2561
\]
Calculate the denominator:
\[
\sum (x_i - \bar{x})^2 = (183 - 183.8889)^2 + (188 - 183.8889)^2 + \ldots + (175 - 183.8889)^2
\]
\[
= (-0.8889)^2 + (4.1111)^2 + (-0.8889)^2 + (-6.8889)^2 + (8.1111)^2 + (7.1111)^2 + (-5.8889)^2 + (4.1111)^2 + (-8.8889)^2
\]
\[
= 0.7901 + 16.9012 + 0.7901 + 47.4412 + 65.7877 + 50.5667 + 34.6667 + 16.9012 + 79.0111
\]
\[
= 312.8560
\]
Now, calculate the slope:
\[
b = \frac{-92.2561}{312.8560} \approx -0.295
\]
The y-intercept (\(a\)) is calculated using the formula:
\[
a = \bar{y} - b\bar{x}
\]
\[
a = 177.7778 - (-0.295 \times 183.8889)
\]
\[
a = 177.7778 + 54.2222 \approx 232
\]
The regression equation is:
\[
\hat{y} = a + bx
\]
Substitute the values of \(a\) and \(b\):
\[
\hat{y} = 232 - 0.295x
\]
Given that the president's height (\(x\)) is 177 cm, we can predict the opponent's height (\(\hat{y}\)):
\[
\hat{y} = 232 - 0.295 \times 177
\]
\[
\hat{y} = 232 - 52.215 \approx 179.785
\]
The actual opponent height is 183 cm. The difference between the predicted and actual height is:
\[
|183 - 179.785| = 3.215
\]
\[
\boxed{\hat{y} = 232 - 0.295x}
\]
\[
\boxed{\hat{y} = 179.785 \text{ cm}}
\]
\[
\boxed{\text{Difference} = 3.215 \text{ cm}}
\]