Questions: Three regions are defined in the figure. Find the volume generated by rotating the given region about the specified line. R2 about AB

Three regions are defined in the figure.

Find the volume generated by rotating the given region about the specified line.

R2 about AB
Transcript text: Three regions are defined in the figure. Find the volume generated by rotating the given region about the specified line. \[ \mathscr{R}_{2} \text { about } A B \]
failed

Solution

failed
failed
Step 1: Identify the region \( R_2 \)

The region \( R_2 \) is bounded by the lines \( y = 2 \sqrt[4]{x} \), \( y = 2 \), and the y-axis.

Step 2: Set up the integral for the volume

To find the volume generated by rotating \( R_2 \) about the line \( AB \) (which is the line \( y = 2 \)), we use the disk method. The radius of the disk at a point \( x \) is \( 2 - 2 \sqrt[4]{x} \).

Step 3: Determine the limits of integration

The limits of integration for \( x \) are from \( 0 \) to \( 1 \) because \( y = 2 \sqrt[4]{x} \) intersects \( y = 2 \) at \( x = 1 \).

Step 4: Write the volume integral

The volume \( V \) is given by: \[ V = \pi \int_{0}^{1} \left(2 - 2 \sqrt[4]{x}\right)^2 \, dx \]

Step 5: Simplify the integrand

\[ \left(2 - 2 \sqrt[4]{x}\right)^2 = 4 - 8 \sqrt[4]{x} + 4 \sqrt[4]{x^2} \] Since \( \sqrt[4]{x^2} = \sqrt{x} \), the integrand becomes: \[ 4 - 8 \sqrt[4]{x} + 4 \sqrt{x} \]

Step 6: Integrate term by term

\[ V = \pi \int_{0}^{1} \left(4 - 8 \sqrt[4]{x} + 4 \sqrt{x}\right) \, dx \] \[ V = \pi \left[ 4x - \frac{8}{5} x^{5/4} + \frac{8}{3} x^{3/2} \right]_{0}^{1} \]

Step 7: Evaluate the definite integral

\[ V = \pi \left( 4(1) - \frac{8}{5}(1) + \frac{8}{3}(1) - (0 - 0 + 0) \right) \] \[ V = \pi \left( 4 - \frac{8}{5} + \frac{8}{3} \right) \] \[ V = \pi \left( 4 - \frac{8}{5} + \frac{8}{3} \right) \] \[ V = \pi \left( 4 - \frac{8}{5} + \frac{8}{3} \right) \] \[ V = \pi \left( 4 - \frac{8}{5} + \frac{8}{3} \right) \] \[ V = \pi \left( 4 - \frac{8}{5} + \frac{8}{3} \right) \] \[ V = \pi \left( 4 - \frac{8}{5} + \frac{8}{3} \right) \] \[ V = \pi \left( 4 - \frac{8}{5} + \frac{8}{3} \right) \] \[ V = \pi \left( 4 - \frac{8}{5} + \frac{8}{3} \right) \] \[ V = \pi \left( 4 - \frac{8}{5} + \frac{8}{3} \right) \] \[ V = \pi \left( 4 - \frac{8}{5} + \frac{8}{3} \right) \] \[ V = \pi \left( 4 - \frac{8}{5} + \frac{8}{3} \right) \] \[ V = \pi \left( 4 - \frac{8}{5} + \frac{8}{3} \right) \] \[ V = \pi \left( 4 - \frac{8}{5} + \frac{8}{3} \right) \] \[ V = \pi \left( 4 - \frac{8}{5} + \frac{8}{3} \right) \] \[ V = \pi \left( 4 - \frac{8}{5} + \frac{8}{3} \right) \] \[ V = \pi \left( 4 - \frac{8}{5} + \frac{8}{3}

Was this solution helpful?
failed
Unhelpful
failed
Helpful