To solve exponential growth problems, first determine the growth rate using given data points and the exponential growth formula. Then, use this rate to find the initial population size, doubling period, future population at a specific time, and the time it will take to reach a certain population size.
Using the exponential growth formula \( P(t) = P_0 e^{kt} \), we have two data points:
- \( P_1 = 300 \) at \( t_1 = 15 \)
- \( P_2 = 1000 \) at \( t_2 = 35 \)
By dividing the equations, we eliminate \( P_0 \):
\[
\frac{1000}{300} = e^{20k} \implies \frac{10}{3} = e^{20k}
\]
Taking the natural logarithm:
\[
\ln\left(\frac{10}{3}\right) = 20k \implies k = \frac{\ln\left(\frac{10}{3}\right)}{20} \approx 0.060198640216296805
\]
Now, substituting \( k \) back into the equation for \( P_1 \):
\[
P_0 = \frac{P_1}{e^{kt_1}} = \frac{300}{e^{15k}} \approx 121.6080139326331
\]
Thus, the initial size of the culture is:
\[
\boxed{P_0 \approx 121.61}
\]
The doubling period \( T \) can be calculated using the formula:
\[
T = \frac{\ln(2)}{k} \approx 11.514332849868898
\]
Thus, the doubling period is:
\[
\boxed{T \approx 11.51 \text{ minutes}}
\]
To find the population after \( t_3 = 75 \) minutes, we use:
\[
P(75) = P_0 e^{k \cdot 75} \approx 11111.111111111117
\]
Thus, the population after 75 minutes is:
\[
\boxed{P(75) \approx 11111.11}
\]
- Initial size of the culture: \( \boxed{121.61} \)
- Doubling period: \( \boxed{11.51 \text{ minutes}} \)
- Population after 75 minutes: \( \boxed{11111.11} \)