To construct the 96% confidence interval for the population mean \( \mu \) when the sample size \( n = 37 \), we use the formula:
\[
\bar{x} \pm z \frac{s}{\sqrt{n}}
\]
Where:
- \( \bar{x} = 194 \) (sample mean)
- \( s = 58 \) (sample standard deviation)
- \( n = 37 \) (sample size)
- \( z \) for 96% confidence level is approximately \( 2.05 \).
Calculating the margin of error:
\[
E = z \frac{s}{\sqrt{n}} = 2.05 \cdot \frac{58}{\sqrt{37}} \approx 19.58
\]
Thus, the confidence interval is:
\[
(194 - 19.58, 194 + 19.58) = (174.42, 213.58)
\]
For the sample size \( n = 55 \), we apply the same formula:
\[
\bar{x} \pm z \frac{s}{\sqrt{n}}
\]
Where:
Calculating the margin of error:
\[
E = z \frac{s}{\sqrt{n}} = 2.05 \cdot \frac{58}{\sqrt{55}} \approx 16.06
\]
Thus, the confidence interval is:
\[
(194 - 16.06, 194 + 16.06) = (177.94, 210.06)
\]
For the 99% confidence interval with \( n = 37 \), we again use the formula:
\[
\bar{x} \pm z \frac{s}{\sqrt{n}}
\]
Where:
- \( z \) for 99% confidence level is approximately \( 2.58 \).
Calculating the margin of error:
\[
E = z \frac{s}{\sqrt{n}} = 2.58 \cdot \frac{58}{\sqrt{37}} \approx 24.56
\]
Thus, the confidence interval is:
\[
(194 - 24.56, 194 + 24.56) = (169.44, 218.56)
\]
- 96% Confidence Interval for \( n = 37 \): \( \boxed{(174.42, 213.58)} \)
- 96% Confidence Interval for \( n = 55 \): \( \boxed{(177.94, 210.06)} \)
- 99% Confidence Interval for \( n = 37 \): \( \boxed{(169.44, 218.56)} \)