We start with the system of equations:
\[
\begin{align_}
5x + 6y &= 10 \quad (1) \\
2x + 3y &= 4 \quad (2)
\end{align_}
\]
The coefficient matrix \( A \) is given by:
\[
A = \begin{bmatrix} 5 & 6 \\ 2 & 3 \end{bmatrix}
\]
To find the determinant of matrix \( A \):
\[
\left| A \right| = \left| \begin{matrix} 5 & 6 \\ 2 & 3 \end{matrix} \right| = 5 \cdot 3 - 6 \cdot 2 = 15 - 12 = 3
\]
Thus,
\[
\text{det}(A) = 3.00
\]
Next, we construct the matrices \( A_x \) and \( A_y \):
\[
A_x = \begin{bmatrix} 10 & 6 \\ 4 & 3 \end{bmatrix}, \quad A_y = \begin{bmatrix} 5 & 10 \\ 2 & 4 \end{bmatrix}
\]
To find the determinant of matrix \( A_x \):
\[
\left| A_x \right| = \left| \begin{matrix} 10 & 6 \\ 4 & 3 \end{matrix} \right| = 10 \cdot 3 - 6 \cdot 4 = 30 - 24 = 6
\]
Thus,
\[
\text{det}(A_x) = 6.00
\]
To find the determinant of matrix \( A_y \):
\[
\left| A_y \right| = \left| \begin{matrix} 5 & 10 \\ 2 & 4 \end{matrix} \right| = 5 \cdot 4 - 10 \cdot 2 = 20 - 20 = 0
\]
Thus,
\[
\text{det}(A_y) = 0.00
\]
Using Cramer's Rule, we calculate \( x \) and \( y \):
\[
x = \frac{\text{det}(A_x)}{\text{det}(A)} = \frac{6}{3} = 2
\]
\[
y = \frac{\text{det}(A_y)}{\text{det}(A)} = \frac{0}{3} = 0
\]
The solution to the system of equations is:
\[
x = 2, \quad y = 0
\]