Questions: Use Coulomb's law to calculate the energy of a magnesium ion and an oxide ion at their equilibrium ion-pair separation distance. Ion Radius (pm) Mg2+ 72 O2- 140

Use Coulomb's law to calculate the energy of a magnesium ion and an oxide ion at their equilibrium ion-pair separation distance.
Ion  Radius (pm)
Mg2+  72
O2-  140
Transcript text: Use Coulomb's law to calculate the energy of a magnesium ion and an oxide ion at their equilibrium ion-pair separation distance. \begin{tabular}{|c|c|} \hline Ion & Radius (pm) \\ \hline $\mathrm{Mg}^{2+}$ & 72 \\ \hline $\mathrm{O}^{2-}$ & 140 \\ \hline \end{tabular}
failed

Solution

failed
failed

Solution Steps

Step 1: Understanding Coulomb's Law

Coulomb's law describes the electrostatic interaction between two charged particles. The energy \( E \) of interaction between two ions can be calculated using the formula:

\[ E = \frac{k \cdot q_1 \cdot q_2}{r} \]

where:

  • \( k \) is Coulomb's constant, approximately \( 8.9875 \times 10^9 \, \text{N m}^2/\text{C}^2 \),
  • \( q_1 \) and \( q_2 \) are the charges of the ions,
  • \( r \) is the distance between the centers of the two ions.
Step 2: Identifying the Charges and Radii

For a magnesium ion (\(\text{Mg}^{2+}\)) and an oxide ion (\(\text{O}^{2-}\)):

  • The charge \( q_1 \) for \(\text{Mg}^{2+}\) is \( +2e \),
  • The charge \( q_2 \) for \(\text{O}^{2-}\) is \( -2e \),
  • The elementary charge \( e \) is approximately \( 1.6022 \times 10^{-19} \, \text{C} \).

The radii of the ions are given as:

  • \(\text{Mg}^{2+}\) radius = 72 pm,
  • \(\text{O}^{2-}\) radius = 140 pm.
Step 3: Calculating the Equilibrium Separation Distance

The equilibrium ion-pair separation distance \( r \) is the sum of the radii of the two ions:

\[ r = 72 \, \text{pm} + 140 \, \text{pm} = 212 \, \text{pm} = 212 \times 10^{-12} \, \text{m} \]

Step 4: Calculating the Energy of Interaction

Substitute the values into Coulomb's law:

\[ E = \frac{(8.9875 \times 10^9 \, \text{N m}^2/\text{C}^2) \cdot (2 \times 1.6022 \times 10^{-19} \, \text{C}) \cdot (-2 \times 1.6022 \times 10^{-19} \, \text{C})}{212 \times 10^{-12} \, \text{m}} \]

Simplifying the expression:

\[ E = \frac{(8.9875 \times 10^9) \cdot (4 \times (1.6022 \times 10^{-19})^2)}{212 \times 10^{-12}} \]

\[ E = \frac{(8.9875 \times 10^9) \cdot (4 \times 2.5669 \times 10^{-38})}{212 \times 10^{-12}} \]

\[ E = \frac{(8.9875 \times 10^9) \cdot 1.0268 \times 10^{-37}}{212 \times 10^{-12}} \]

\[ E = \frac{9.2265 \times 10^{-28}}{212 \times 10^{-12}} \]

\[ E = -4.352 \times 10^{-19} \, \text{J} \]

Final Answer

The energy of interaction between a magnesium ion and an oxide ion at their equilibrium ion-pair separation distance is:

\[ \boxed{-4.352 \times 10^{-19} \, \text{J}} \]

Was this solution helpful?
failed
Unhelpful
failed
Helpful