Questions: Tres son concurrentes en el punto O y la tensión del cable Tl=5,000 #, con la pendiente que se muestra. Determinar la magnitud requerida para T2 y T3 que resulta en la fuerza de 10 k que actúa verticalmente hacia bajo sobre el eje del poste. Escala 1 "=2,000 #.

Tres son concurrentes en el punto O y la tensión del cable Tl=5,000 #, con la pendiente que se muestra. Determinar la magnitud requerida para T2 y T3 que resulta en la fuerza de 10 k que actúa verticalmente hacia bajo sobre el eje del poste. Escala 1 "=2,000 #.
Transcript text: Tres son concurrentes en el punto $O$ y la tensión del cable $T_{l}=5,000 \#$, con la pendiente que se muestra. Determinar la magnitud requerida para $T_{2}$ y $T_{3}$ que resulta en la fuerza de 10 k que actúa verticalmente hacia bajo sobre el eje del poste. Escala $1 "=2,000 \#$.
failed

Solution

failed
failed
Step 1: Identify the forces and their components

We have three forces acting at point O: T1, T2, and T3. The tension T1 is given as 5000 lbs. The angles of the cables are given by their slopes:

  • T1: slope 4/3
  • T2: slope 5/12
  • T3: slope 4/3
Step 2: Resolve the forces into their components

Resolve each force into its horizontal (x) and vertical (y) components:

  • For T1 (5000 lbs):

    • \( T1_x = T1 \cdot \frac{3}{5} = 5000 \cdot \frac{3}{5} = 3000 \) lbs
    • \( T1_y = T1 \cdot \frac{4}{5} = 5000 \cdot \frac{4}{5} = 4000 \) lbs
  • For T2:

    • \( T2_x = T2 \cdot \frac{12}{13} \)
    • \( T2_y = T2 \cdot \frac{5}{13} \)
  • For T3:

    • \( T3_x = T3 \cdot \frac{3}{5} \)
    • \( T3_y = T3 \cdot \frac{4}{5} \)
Step 3: Apply equilibrium conditions

Since the system is in equilibrium, the sum of the forces in both the x and y directions must be zero.

Sum of forces in the x-direction:

\[ T1_x + T2_x - T3_x = 0 \] \[ 3000 + T2 \cdot \frac{12}{13} - T3 \cdot \frac{3}{5} = 0 \]

Sum of forces in the y-direction:

\[ T1_y + T2_y + T3_y = 10,000 \text{ lbs (downward force)} \] \[ 4000 + T2 \cdot \frac{5}{13} + T3 \cdot \frac{4}{5} = 10,000 \]

Step 4: Solve the system of equations

We have two equations with two unknowns (T2 and T3):

  1. \( 3000 + T2 \cdot \frac{12}{13} - T3 \cdot \frac{3}{5} = 0 \)
  2. \( 4000 + T2 \cdot \frac{5}{13} + T3 \cdot \frac{4}{5} = 10,000 \)
Solve for T2 and T3:

From the first equation: \[ T2 \cdot \frac{12}{13} = T3 \cdot \frac{3}{5} - 3000 \] \[ T2 = \left( T3 \cdot \frac{3}{5} - 3000 \right) \cdot \frac{13}{12} \]

Substitute \( T2 \) into the second equation: \[ 4000 + \left( \left( T3 \cdot \frac{3}{5} - 3000 \right) \cdot \frac{13}{12} \right) \cdot \frac{5}{13} + T3 \cdot \frac{4}{5} = 10,000 \] \[ 4000 + \left( T3 \cdot \frac{3}{5} - 3000 \right) \cdot \frac{5}{12} + T3 \cdot \frac{4}{5} = 10,000 \] \[ 4000 + T3 \cdot \frac{15}{60} - 3000 \cdot \frac{5}{12} + T3 \cdot \frac{48}{60} = 10,000 \] \[ 4000 + T3 \cdot \frac{63}{60} - 1250 + T3 \cdot \frac{48}{60} = 10,000 \] \[ 2750 + T3 \cdot \frac{111}{60} = 10,000 \] \[ T3 \cdot \frac{111}{60} = 7250 \] \[ T3 = 7250 \cdot \frac{60}{111} \] \[ T3 \approx 3914.41 \text{ lbs} \]

Now, substitute \( T3 \) back into the equation for \( T2 \): \[ T2 = \left( 3914.41 \cdot \frac{3

Was this solution helpful?
failed
Unhelpful
failed
Helpful