Questions: The accompanying table shows the probability distribution for x, the number that shows up when a loaded die is rolled. Find the mean. x P(x) 1 0.14 2 0.16 3 0.12 4 0.14 5 0.13 6 0.31 A. μ=0.17 B. μ=3.89 C. μ=3.50 D. μ=3.76

The accompanying table shows the probability distribution for x, the number that shows up when a loaded die is rolled. Find the mean.

x P(x)
1 0.14
2 0.16
3 0.12
4 0.14
5 0.13
6 0.31

A. μ=0.17
B. μ=3.89
C. μ=3.50
D. μ=3.76
Transcript text: The accompanying table shows the probability distribution for x , the number that shows up when a loaded die is rolled. Find the mean. \begin{tabular}{ll} $\mathbf{x}$ & $\mathrm{P}(\mathrm{x})$ \\ 1 & 0.14 \\ 2 & 0.16 \\ 3 & 0.12 \\ 4 & 0.14 \\ 5 & 0.13 \\ 6 & 0.31 \end{tabular} A. $\mu=0.17$ B. $\mu=3.89$ C. $\mu=3.50$ D. $\mu=3.76$
failed

Solution

failed
failed

Solution Steps

Step 1: Calculate the Mean

To find the mean \( \mu \) of the probability distribution, we use the formula:

\[ \mu = \sum_{i=1}^{n} x_i \cdot P(x_i) \]

Substituting the values from the table:

\[ \mu = 1 \times 0.14 + 2 \times 0.16 + 3 \times 0.12 + 4 \times 0.14 + 5 \times 0.13 + 6 \times 0.31 \]

Calculating each term:

\[ \mu = 0.14 + 0.32 + 0.36 + 0.56 + 0.65 + 1.86 = 3.89 \]

Step 2: Calculate the Variance

The variance \( \sigma^2 \) is calculated using the formula:

\[ \sigma^2 = \sum_{i=1}^{n} (x_i - \mu)^2 \cdot P(x_i) \]

Substituting the values:

\[ \sigma^2 = (1 - 3.89)^2 \times 0.14 + (2 - 3.89)^2 \times 0.16 + (3 - 3.89)^2 \times 0.12 + (4 - 3.89)^2 \times 0.14 + (5 - 3.89)^2 \times 0.13 + (6 - 3.89)^2 \times 0.31 \]

Calculating each term:

\[ \sigma^2 = (2.89)^2 \times 0.14 + (1.89)^2 \times 0.16 + (0.89)^2 \times 0.12 + (0.11)^2 \times 0.14 + (1.11)^2 \times 0.13 + (2.11)^2 \times 0.31 \]

\[ \sigma^2 = 8.3521 \times 0.14 + 3.5721 \times 0.16 + 0.7921 \times 0.12 + 0.0121 \times 0.14 + 1.2321 \times 0.13 + 4.4521 \times 0.31 \]

Calculating the total:

\[ \sigma^2 = 1.1693 + 0.5715 + 0.0950 + 0.0017 + 0.1602 + 1.3802 = 3.3779 \approx 3.38 \]

Step 3: Calculate the Standard Deviation

The standard deviation \( \sigma \) is the square root of the variance:

\[ \sigma = \sqrt{\sigma^2} = \sqrt{3.38} \approx 1.84 \]

Final Answer

The mean of the distribution is \( \mu = 3.89 \). Therefore, the answer is:

\[ \boxed{\mu = 3.89} \]

Was this solution helpful?
failed
Unhelpful
failed
Helpful