The surface area \( S \) of a curve \( y = f(x) \) revolved around the \( x \)-axis over the interval \( [a, b] \) is given by:
\[
S = 2\pi \int_{a}^{b} y \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx
\]
Differentiate \( y = 3 \sin(2x) \) with respect to \( x \):
\[
\frac{dy}{dx} = 3 \cdot 2 \cos(2x) = 6 \cos(2x)
\]
Substitute \( y = 3 \sin(2x) \) and \( \frac{dy}{dx} = 6 \cos(2x) \) into the formula:
\[
S = 2\pi \int_{0}^{\frac{\pi}{2}} 3 \sin(2x) \sqrt{1 + (6 \cos(2x))^2} \, dx
\]
Simplify the expression inside the square root:
\[
S = 2\pi \int_{0}^{\frac{\pi}{2}} 3 \sin(2x) \sqrt{1 + 36 \cos^2(2x)} \, dx
\]
Factor out constants and simplify the integrand:
\[
S = 6\pi \int_{0}^{\frac{\pi}{2}} \sin(2x) \sqrt{1 + 36 \cos^2(2x)} \, dx
\]
Let \( u = \cos(2x) \). Then, \( du = -2 \sin(2x) \, dx \), and the limits of integration change accordingly:
- When \( x = 0 \), \( u = \cos(0) = 1 \).
- When \( x = \frac{\pi}{2} \), \( u = \cos(\pi) = -1 \).
Substitute and adjust the integral:
\[
S = 6\pi \int_{1}^{-1} \sqrt{1 + 36u^2} \cdot \left( -\frac{1}{2} \right) du
\]
Simplify the integral:
\[
S = -3\pi \int_{1}^{-1} \sqrt{1 + 36u^2} \, du
\]
Reverse the limits of integration to eliminate the negative sign:
\[
S = 3\pi \int_{-1}^{1} \sqrt{1 + 36u^2} \, du
\]
The integral \( \int_{-1}^{1} \sqrt{1 + 36u^2} \, du \) can be evaluated using standard techniques or a table of integrals. However, the exact evaluation is beyond the scope of this step-by-step solution.