Find the exponential function that describes the amount in the account after time \( t \), in years.
Exponential function formulation...
The exponential function for continuous compounding is given by \( A(t) = P \cdot e^{rt} \). Substituting the values \( P = 16745 \) and \( r = 0.066 \), we have:
\[
A(t) = 16745 \cdot e^{0.066t}
\]
Final expression...
Thus, the exponential function is:
\[
\boxed{A(t) = 16745 \cdot e^{0.066t}}
\]
What is the balance after 1 year? 2 years? 5 years? 10 years?
Calculate balance after 1 year...
For \( t = 1 \):
\[
A(1) = 16745 \cdot e^{0.066 \cdot 1} \approx 17887.46
\]
Calculate balance after 2 years...
For \( t = 2 \):
\[
A(2) = 16745 \cdot e^{0.066 \cdot 2} \approx 19107.86
\]
Calculate balance after 5 years...
For \( t = 5 \):
\[
A(5) = 16745 \cdot e^{0.066 \cdot 5} \approx 23291.76
\]
Calculate balance after 10 years...
For \( t = 10 \):
\[
A(10) = 16745 \cdot e^{0.066 \cdot 10} \approx 32398.10
\]
The balances are:
\[
\boxed{A(1) \approx 17887.46}, \quad \boxed{A(2) \approx 19107.86}, \quad \boxed{A(5) \approx 23291.76}, \quad \boxed{A(10) \approx 32398.10}
\]
What is the doubling time?
Calculate doubling time...
The doubling time \( t \) can be calculated using the formula:
\[
t = \frac{\ln(2)}{r}
\]
Substituting \( r = 0.066 \):
\[
t \approx \frac{\ln(2)}{0.066} \approx 10.50
\]
The doubling time is approximately:
\[
\boxed{10.50 \text{ years}}
\]
The exponential function is \( \boxed{A(t) = 16745 \cdot e^{0.066t}} \).
The balances are \( \boxed{A(1) \approx 17887.46} \), \( \boxed{A(2) \approx 19107.86} \), \( \boxed{A(5) \approx 23291.76} \), \( \boxed{A(10) \approx 32398.10} \).
The doubling time is \( \boxed{10.50 \text{ years}} \).