La posición \(\vec{r}\) está dada por:
\[
\vec{r} = \left[4.0 \, \text{cm} + \left(\frac{25 \, \text{cm}}{\text{s}^2}\right) t^2 \right] \hat{i} + (5.0 \, \text{cm/s}) t \hat{j}
\]
Para \(t = 0\):
\[
\vec{r}(0) = \left[4.0 \, \text{cm} + \left(\frac{25 \, \text{cm}}{\text{s}^2}\right) (0)^2 \right] \hat{i} + (5.0 \, \text{cm/s}) (0) \hat{j} = 4.0 \, \text{cm} \hat{i}
\]
Para \(t = 2.0\) s:
\[
\vec{r}(2.0) = \left[4.0 \, \text{cm} + \left(\frac{25 \, \text{cm}}{\text{s}^2}\right) (2.0)^2 \right] \hat{i} + (5.0 \, \text{cm/s}) (2.0) \hat{j}
\]
\[
\vec{r}(2.0) = \left[4.0 \, \text{cm} + 100 \, \text{cm} \right] \hat{i} + 10.0 \, \text{cm} \hat{j}
\]
\[
\vec{r}(2.0) = 104.0 \, \text{cm} \hat{i} + 10.0 \, \text{cm} \hat{j}
\]
\(\boxed{\vec{r}(2.0) = 104.0 \, \text{cm} \hat{i} + 10.0 \, \text{cm} \hat{j}}\)