Questions: If 28 moles of NO combine with 45 moles of H₂, how many moles of NH₃ can form? What is the limiting reagent? 2 NO(g) + 5 H₂(g) → 2 NH₃(g) + 2 H₂O(g) Step 1: Show how you would determine the number of moles of NH₃ that could form from each starting material. 28 moles NO × () = ? moles NH₃ 45 moles H₂ × () = ? moles NH₃ Answer Bank 2 moles NO 5 moles H₂ 2 moles NH₃ 2 moles H₂O

If 28 moles of NO combine with 45 moles of H₂, how many moles of NH₃ can form? What is the limiting reagent?

2 NO(g) + 5 H₂(g) → 2 NH₃(g) + 2 H₂O(g)

Step 1: Show how you would determine the number of moles of NH₃ that could form from each starting material.

28 moles NO × () = ? moles NH₃ 
45 moles H₂ × () = ? moles NH₃

Answer Bank
2 moles NO
5 moles H₂
2 moles NH₃
2 moles H₂O
Transcript text: If 28 moles of NO combine with 45 moles of $\mathrm{H}_{2}$, how many moles of $\mathrm{NH}_{3}$ can form? What is the limiting reagent? \[ 2 \mathrm{NO}(\mathrm{~g})+5 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \] Step 1: Show how you would determine the number of moles of $\mathrm{NH}_{3}$ that could form from each starting material. \[ \begin{array}{l} 28 \text { moles } \mathrm{NO} \times \frac{\square}{\square}=\text { ? moles } \mathrm{NH}_{3} \\ 45 \text { moles } \mathrm{H}_{2} \times \frac{\square}{\square}=\text { ? moles } \mathrm{NH}_{3} \end{array} \] Answer Bank 2 moles NO 5 moles $\mathrm{H}_{2}$ 2 moles $\mathrm{NH}_{3}$ 2 moles $\mathrm{H}_{2} \mathrm{O}$
failed

Solution

failed
failed

Solution Steps

Step 1: Determine the Moles of \(\mathrm{NH}_{3}\) from \(\mathrm{NO}\)

The balanced chemical equation is:

\[ 2 \mathrm{NO} + 5 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3} + 2 \mathrm{H}_{2} \mathrm{O} \]

From the equation, 2 moles of \(\mathrm{NO}\) produce 2 moles of \(\mathrm{NH}_{3}\). Therefore, the conversion factor is:

\[ \frac{2 \text{ moles } \mathrm{NH}_{3}}{2 \text{ moles } \mathrm{NO}} \]

Calculate the moles of \(\mathrm{NH}_{3}\) from 28 moles of \(\mathrm{NO}\):

\[ 28 \text{ moles } \mathrm{NO} \times \frac{2 \text{ moles } \mathrm{NH}_{3}}{2 \text{ moles } \mathrm{NO}} = 28 \text{ moles } \mathrm{NH}_{3} \]

Step 2: Determine the Moles of \(\mathrm{NH}_{3}\) from \(\mathrm{H}_{2}\)

From the equation, 5 moles of \(\mathrm{H}_{2}\) produce 2 moles of \(\mathrm{NH}_{3}\). Therefore, the conversion factor is:

\[ \frac{2 \text{ moles } \mathrm{NH}_{3}}{5 \text{ moles } \mathrm{H}_{2}} \]

Calculate the moles of \(\mathrm{NH}_{3}\) from 45 moles of \(\mathrm{H}_{2}\):

\[ 45 \text{ moles } \mathrm{H}_{2} \times \frac{2 \text{ moles } \mathrm{NH}_{3}}{5 \text{ moles } \mathrm{H}_{2}} = 18 \text{ moles } \mathrm{NH}_{3} \]

Step 3: Identify the Limiting Reagent

The limiting reagent is the reactant that produces the lesser amount of product. From the calculations:

  • \(\mathrm{NO}\) can produce 28 moles of \(\mathrm{NH}_{3}\).
  • \(\mathrm{H}_{2}\) can produce 18 moles of \(\mathrm{NH}_{3}\).

Thus, \(\mathrm{H}_{2}\) is the limiting reagent because it produces fewer moles of \(\mathrm{NH}_{3}\).

Final Answer

  • The number of moles of \(\mathrm{NH}_{3}\) that can form is \(\boxed{18 \text{ moles}}\).
  • The limiting reagent is \(\boxed{\mathrm{H}_{2}}\).
Was this solution helpful?
failed
Unhelpful
failed
Helpful