The ionization of formic acid (\(\text{HCOOH}\)) in water can be represented as:
\[
\text{HCOOH} \rightleftharpoons \text{H}^+ + \text{HCOO}^-
\]
The expression for the acid dissociation constant (\( K_a \)) is:
\[
K_a = \frac{[\text{H}^+][\text{HCOO}^-]}{[\text{HCOOH}]}
\]
Given \( K_a = 1.8 \times 10^{-4} \).
Initially, the concentration of \(\text{HCOOH}\) is 0.20 M, and the concentrations of \(\text{H}^+\) and \(\text{HCOO}^-\) are 0 M.
Let \( x \) be the change in concentration at equilibrium:
- \([\text{HCOOH}] = 0.20 - x\)
- \([\text{H}^+] = x\)
- \([\text{HCOO}^-] = x\)
Substitute the equilibrium concentrations into the \( K_a \) expression:
\[
1.8 \times 10^{-4} = \frac{x \cdot x}{0.20 - x}
\]
Assume \( x \) is small compared to 0.20, so \( 0.20 - x \approx 0.20 \):
\[
1.8 \times 10^{-4} = \frac{x^2}{0.20}
\]
Solve for \( x \) (concentration of \(\text{H}^+\)):
\[
x^2 = 1.8 \times 10^{-4} \times 0.20
\]
\[
x^2 = 3.6 \times 10^{-5}
\]
\[
x = \sqrt{3.6 \times 10^{-5}}
\]
\[
x \approx 6.0 \times 10^{-3}
\]
The pH is calculated using the formula:
\[
\text{pH} = -\log[\text{H}^+]
\]
\[
\text{pH} = -\log(6.0 \times 10^{-3})
\]
\[
\text{pH} \approx 2.22
\]