Questions: Reparametrize the curve with respect to arc length measured from the point where t=0 in the direction of increasing t. (Enter your answer in terms of s.) r(t)=e^(6t) cos(6t) i+6 j+e^(6t) sin(6t) k r(t(s))=

Reparametrize the curve with respect to arc length measured from the point where t=0 in the direction of increasing t. (Enter your answer in terms of s.)

r(t)=e^(6t) cos(6t) i+6 j+e^(6t) sin(6t) k

r(t(s))=
Transcript text: Reparametrize the curve with respect to arc length measured from the point where $t=0$ in the direction of increasing $t$. (Enter your answer in terms of $s$.) \[ \begin{array}{l} \mathbf{r}(t)=e^{6 t} \cos (6 t) \mathbf{i}+6 \mathbf{j}+e^{6 t} \sin (6 t) \mathbf{k} \\ \mathbf{r}(t(s))=\square \end{array} \]
failed

Solution

failed
failed

Solution Steps

To reparametrize the curve with respect to arc length \( s \), we need to follow these steps:

  1. Compute the derivative of the position vector \(\mathbf{r}(t)\) with respect to \( t \).
  2. Find the magnitude of this derivative to get the speed \( \|\mathbf{r}'(t)\| \).
  3. Integrate the speed from 0 to \( t \) to express the arc length \( s \) as a function of \( t \).
  4. Solve for \( t \) as a function of \( s \).
  5. Substitute \( t(s) \) back into the original position vector \(\mathbf{r}(t)\).
Step 1: Compute the Derivative of \(\mathbf{r}(t)\)

Given the curve: \[ \mathbf{r}(t) = e^{6t} \cos(6t) \mathbf{i} + 6 \mathbf{j} + e^{6t} \sin(6t) \mathbf{k} \]

First, we need to find the derivative \(\mathbf{r}'(t)\): \[ \mathbf{r}'(t) = \frac{d}{dt} \left( e^{6t} \cos(6t) \mathbf{i} + 6 \mathbf{j} + e^{6t} \sin(6t) \mathbf{k} \right) \]

Using the product rule and chain rule: \[ \mathbf{r}'(t) = \left( \frac{d}{dt} e^{6t} \cos(6t) \right) \mathbf{i} + \left( \frac{d}{dt} 6 \right) \mathbf{j} + \left( \frac{d}{dt} e^{6t} \sin(6t) \right) \mathbf{k} \]

\[ \mathbf{r}'(t) = \left( 6e^{6t} \cos(6t) - 6e^{6t} \sin(6t) \right) \mathbf{i} + 0 \mathbf{j} + \left( 6e^{6t} \sin(6t) + 6e^{6t} \cos(6t) \right) \mathbf{k} \]

\[ \mathbf{r}'(t) = 6e^{6t} (\cos(6t) - \sin(6t)) \mathbf{i} + 6e^{6t} (\sin(6t) + \cos(6t)) \mathbf{k} \]

Step 2: Compute the Magnitude of \(\mathbf{r}'(t)\)

Next, we find the magnitude of \(\mathbf{r}'(t)\): \[ \|\mathbf{r}'(t)\| = \sqrt{ \left( 6e^{6t} (\cos(6t) - \sin(6t)) \right)^2 + \left( 6e^{6t} (\sin(6t) + \cos(6t)) \right)^2 } \]

\[ \|\mathbf{r}'(t)\| = 6e^{6t} \sqrt{ (\cos(6t) - \sin(6t))^2 + (\sin(6t) + \cos(6t))^2 } \]

Simplify the expression inside the square root: \[ (\cos(6t) - \sin(6t))^2 + (\sin(6t) + \cos(6t))^2 = \cos^2(6t) - 2\cos(6t)\sin(6t) + \sin^2(6t) + \sin^2(6t) + 2\cos(6t)\sin(6t) + \cos^2(6t) \]

\[ = 2\cos^2(6t) + 2\sin^2(6t) = 2(\cos^2(6t) + \sin^2(6t)) = 2 \]

Thus: \[ \|\mathbf{r}'(t)\| = 6e^{6t} \sqrt{2} = 6\sqrt{2} e^{6t} \]

Step 3: Compute the Arc Length \(s\)

The arc length \(s\) from \(t = 0\) to \(t\) is given by: \[ s = \int_0^t \|\mathbf{r}'(u)\| \, du = \int_0^t 6\sqrt{2} e^{6u} \, du \]

Evaluate the integral: \[ s = 6\sqrt{2} \int_0^t e^{6u} \, du = 6\sqrt{2} \left[ \frac{e^{6u}}{6} \right]_0^t = \sqrt{2} \left( e^{6t} - 1 \right) \]

Step 4: Solve for \(t\) in Terms of \(s\)

We need to express \(t\) in terms of \(s\): \[ s = \sqrt{2} \left( e^{6t} - 1 \right) \]

\[ \frac{s}{\sqrt{2}} = e^{6t} - 1 \]

\[ e^{6t} = \frac{s}{\sqrt{2}} + 1 \]

\[ 6t = \ln \left( \frac{s}{\sqrt{2}} + 1 \right) \]

\[ t = \frac{1}{6} \ln \left( \frac{s}{\sqrt{2}} + 1 \right) \]

Step 5: Reparametrize the Curve

Substitute \(t(s)\) back into \(\mathbf{r}(t)\): \[ \mathbf{r}(t(s)) = e^{6 \left( \frac{1}{6} \ln \left( \frac{s}{\sqrt{2}} + 1 \right) \right)} \cos \left( 6 \left( \frac{1}{6} \ln \left( \frac{s}{\sqrt{2}} + 1 \right) \right) \right) \mathbf{i} + 6 \mathbf{j} + e^{6 \left( \frac{1}{6} \ln \left( \frac{s}{\sqrt{2}} + 1 \right) \right)} \sin \left( 6 \left( \frac{1}{6} \ln \left( \frac{s}{\sqrt{2}} + 1 \right) \right) \right) \mathbf{k} \]

Simplify: \[ \mathbf{r}(t(s)) = \left( \frac{s}{\sqrt{2}} + 1 \right) \cos \left( \ln \left( \frac{s}{\sqrt{2}} + 1 \right) \right) \mathbf{i} + 6 \mathbf{j} + \left( \frac{s}{\sqrt{2}} + 1 \right) \sin \left( \ln \left( \frac{s}{\sqrt{2}} + 1 \right) \right) \mathbf{k} \]

Final Answer

\[ \boxed{\mathbf{r}(t(s)) = \left( \frac{s}{\sqrt{2}} + 1 \right) \cos \left( \ln \left( \frac{s}{\sqrt{2}} + 1 \right) \right) \mathbf{i} + 6 \mathbf{j} + \left( \frac{s}{\sqrt{2}} + 1 \right) \sin \left( \ln \left( \frac{s}{\sqrt{2}} + 1 \right) \right) \mathbf{k}} \]

Was this solution helpful?
failed
Unhelpful
failed
Helpful