Questions: Calorimetry
Thermodynamics
A 5.00 kg block of metal with c=650 J /(kg*C) at 80.0°C comes in contact with a 1.25 kg glass block at 20.0°C. They come to equilibrium at 63.9°C. What is the specific heat of the glass?
(Unit =J /(kg*C))
Transcript text: Calorimetry
Thermodynamics
A 5.00 kg block of metal with $\mathrm{c}=650 \mathrm{~J} /\left(\mathrm{kg}^{*} \mathrm{C}\right)$ at $80.0^{\circ} \mathrm{C}$ comes in contact with a 1.25 kg glass block at $20.0^{\circ} \mathrm{C}$. They come to equilibrium at $63.9^{\circ} \mathrm{C}$. What is the specific heat of the glass?
\[
\left(\text { Unit }=J /\left(\mathrm{kg}^{*} \mathrm{C}\right)\right)
\]
Submit
Solution
Solution Steps
Step 1: Identify the Known Variables
We are given:
Mass of the metal block, \( m_{\text{metal}} = 5.00 \, \text{kg} \)
Specific heat capacity of the metal, \( c_{\text{metal}} = 650 \, \text{J/(kg} \cdot \text{C)} \)
Initial temperature of the metal, \( T_{\text{metal, initial}} = 80.0^\circ \text{C} \)
Mass of the glass block, \( m_{\text{glass}} = 1.25 \, \text{kg} \)
Initial temperature of the glass, \( T_{\text{glass, initial}} = 20.0^\circ \text{C} \)
Final equilibrium temperature, \( T_{\text{final}} = 63.9^\circ \text{C} \)
Step 2: Apply the Principle of Conservation of Energy
The heat lost by the metal block will be equal to the heat gained by the glass block. This can be expressed as:
\[
Q_{\text{lost by metal}} = Q_{\text{gained by glass}}
\]
Step 3: Calculate the Heat Lost by the Metal Block
The heat lost by the metal block is given by:
\[
Q_{\text{metal}} = m_{\text{metal}} \cdot c_{\text{metal}} \cdot (T_{\text{metal, initial}} - T_{\text{final}})
\]
Substituting the known values:
\[
Q_{\text{metal}} = 5.00 \, \text{kg} \cdot 650 \, \text{J/(kg} \cdot \text{C)} \cdot (80.0^\circ \text{C} - 63.9^\circ \text{C})
\]
\[
Q_{\text{metal}} = 5.00 \cdot 650 \cdot 16.1
\]
\[
Q_{\text{metal}} = 52325 \, \text{J}
\]
Step 4: Calculate the Heat Gained by the Glass Block
The heat gained by the glass block is given by:
\[
Q_{\text{glass}} = m_{\text{glass}} \cdot c_{\text{glass}} \cdot (T_{\text{final}} - T_{\text{glass, initial}})
\]
Since \( Q_{\text{metal}} = Q_{\text{glass}} \), we can set up the equation:
\[
52325 \, \text{J} = 1.25 \, \text{kg} \cdot c_{\text{glass}} \cdot (63.9^\circ \text{C} - 20.0^\circ \text{C})
\]
\[
52325 = 1.25 \cdot c_{\text{glass}} \cdot 43.9
\]
Step 5: Solve for the Specific Heat Capacity of the Glass
Rearrange the equation to solve for \( c_{\text{glass}} \):
\[
c_{\text{glass}} = \frac{52325}{1.25 \cdot 43.9}
\]
\[
c_{\text{glass}} = \frac{52325}{54.875}
\]
\[
c_{\text{glass}} \approx 953.4 \, \text{J/(kg} \cdot \text{C)}
\]