Questions: Given r(t) = t i + t^2 j + t k, find the binormal vector B(0). Write your answer using standard unit vector notation.

Given r(t) = t i + t^2 j + t k, find the binormal vector B(0). Write your answer using standard unit vector notation.
Transcript text: Given $\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+t \mathbf{k}$, find the binormal vector $\mathbf{B}(0)$. Write your answer using standard unit vector notation.
failed

Solution

failed
failed

Solution Steps

To find the binormal vector \(\mathbf{B}(0)\), we need to follow these steps:

  1. Compute the tangent vector \(\mathbf{T}(t)\) by differentiating \(\mathbf{r}(t)\) with respect to \(t\) and then normalizing it.
  2. Compute the normal vector \(\mathbf{N}(t)\) by differentiating \(\mathbf{T}(t)\) with respect to \(t\) and then normalizing it.
  3. The binormal vector \(\mathbf{B}(t)\) is the cross product of \(\mathbf{T}(t)\) and \(\mathbf{N}(t)\).
  4. Evaluate \(\mathbf{B}(t)\) at \(t = 0\).
Step 1: Compute the Tangent Vector \(\mathbf{T}(t)\)

The tangent vector \(\mathbf{T}(t)\) is obtained by differentiating \(\mathbf{r}(t) = t \mathbf{i} + t^2 \mathbf{j} + t \mathbf{k}\) with respect to \(t\): \[ \mathbf{r}'(t) = \frac{d}{dt}(t \mathbf{i} + t^2 \mathbf{j} + t \mathbf{k}) = \mathbf{i} + 2t \mathbf{j} + \mathbf{k} \] Normalize \(\mathbf{r}'(t)\) to get \(\mathbf{T}(t)\): \[ \mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} = \frac{\mathbf{i} + 2t \mathbf{j} + \mathbf{k}}{\sqrt{1 + (2t)^2 + 1}} = \frac{\mathbf{i} + 2t \mathbf{j} + \mathbf{k}}{\sqrt{2 + 4t^2}} \]

Step 2: Compute the Normal Vector \(\mathbf{N}(t)\)

Differentiate \(\mathbf{T}(t)\) with respect to \(t\) to find \(\mathbf{N}(t)\): \[ \mathbf{T}'(t) = \frac{d}{dt}\left(\frac{\mathbf{i} + 2t \mathbf{j} + \mathbf{k}}{\sqrt{2 + 4t^2}}\right) \] At \(t = 0\), \(\mathbf{T}(0) = \frac{\mathbf{i} + \mathbf{k}}{\sqrt{2}}\). The derivative simplifies to: \[ \mathbf{T}'(0) = \frac{2 \mathbf{j}}{\sqrt{2}} = \sqrt{2} \mathbf{j} \] Normalize \(\mathbf{T}'(0)\) to get \(\mathbf{N}(0)\): \[ \mathbf{N}(0) = \frac{\sqrt{2} \mathbf{j}}{\sqrt{2}} = \mathbf{j} \]

Step 3: Compute the Binormal Vector \(\mathbf{B}(0)\)

The binormal vector \(\mathbf{B}(t)\) is the cross product of \(\mathbf{T}(t)\) and \(\mathbf{N}(t)\): \[ \mathbf{B}(0) = \mathbf{T}(0) \times \mathbf{N}(0) = \left(\frac{\mathbf{i} + \mathbf{k}}{\sqrt{2}}\right) \times \mathbf{j} \] Calculate the cross product: \[ \mathbf{B}(0) = \frac{1}{\sqrt{2}} (\mathbf{i} \times \mathbf{j} + \mathbf{k} \times \mathbf{j}) = \frac{1}{\sqrt{2}} (\mathbf{k} - \mathbf{i}) \] Simplify: \[ \mathbf{B}(0) = \frac{1}{\sqrt{2}} \mathbf{k} - \frac{1}{\sqrt{2}} \mathbf{i} = -\frac{1}{\sqrt{2}} \mathbf{i} + \frac{1}{\sqrt{2}} \mathbf{k} \]

Final Answer

The binormal vector \(\mathbf{B}(0)\) is: \[ \boxed{-\frac{1}{\sqrt{2}} \mathbf{i} + \frac{1}{\sqrt{2}} \mathbf{k}} \]

Was this solution helpful?
failed
Unhelpful
failed
Helpful