The given equation is:
\[
\frac{[\Delta c][\Delta c]}{[0.159-\Delta c]}=4.60 \cdot 10^{-4}
\]
This can be rewritten as:
\[
\frac{(\Delta c)^2}{0.159 - \Delta c} = 4.60 \times 10^{-4}
\]
To solve for \(\Delta c\), we first multiply both sides by \(0.159 - \Delta c\) to eliminate the fraction:
\[
(\Delta c)^2 = 4.60 \times 10^{-4} \times (0.159 - \Delta c)
\]
Expand the right side of the equation:
\[
(\Delta c)^2 = 4.60 \times 10^{-4} \times 0.159 - 4.60 \times 10^{-4} \times \Delta c
\]
Simplify the expression:
\[
(\Delta c)^2 = 7.314 \times 10^{-5} - 4.60 \times 10^{-4} \Delta c
\]
Rearrange the equation to form a quadratic equation:
\[
(\Delta c)^2 + 4.60 \times 10^{-4} \Delta c - 7.314 \times 10^{-5} = 0
\]
This is a standard quadratic equation of the form \(ax^2 + bx + c = 0\), where:
- \(a = 1\)
- \(b = 4.60 \times 10^{-4}\)
- \(c = -7.314 \times 10^{-5}\)
Use the quadratic formula:
\[
\Delta c = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
Substitute the values:
\[
\Delta c = \frac{-4.60 \times 10^{-4} \pm \sqrt{(4.60 \times 10^{-4})^2 - 4 \times 1 \times (-7.314 \times 10^{-5})}}{2 \times 1}
\]
Calculate the discriminant:
\[
(4.60 \times 10^{-4})^2 = 2.116 \times 10^{-7}
\]
\[
4 \times 1 \times (-7.314 \times 10^{-5}) = -2.9256 \times 10^{-4}
\]
\[
b^2 - 4ac = 2.116 \times 10^{-7} + 2.9256 \times 10^{-4} = 2.9277 \times 10^{-4}
\]
Calculate \(\Delta c\):
\[
\Delta c = \frac{-4.60 \times 10^{-4} \pm \sqrt{2.9277 \times 10^{-4}}}{2}
\]
Calculate the square root:
\[
\sqrt{2.9277 \times 10^{-4}} \approx 0.01711
\]
Substitute back:
\[
\Delta c = \frac{-4.60 \times 10^{-4} \pm 0.01711}{2}
\]
Calculate the two possible solutions:
- \(\Delta c = \frac{-4.60 \times 10^{-4} + 0.01711}{2} \approx 0.008325\)
- \(\Delta c = \frac{-4.60 \times 10^{-4} - 0.01711}{2}\) (This will be negative and not physically meaningful in this context)
The valid solution for \(\Delta c\) is:
\[
\boxed{\Delta c = 0.008325}
\]