Questions: If you already know aN and v, then the formula aN = κv^2 gives a convenient way to find the curvature. Use it to find the curvature and radius of curvature of the curve r(t) = (cos t + t sin t) i + (sin t - t cos t) j, t>0.
The curvature is
Transcript text: If you already know $\left|a_{N}\right|$ and $|\mathbf{v}|$, then the formula $a_{N}=\kappa|\mathbf{v}|^{2}$ gives a convenient way to find the curvature. Use it to find the curvature and radius of curvature of the curve $\mathbf{r}(t)=(\cos t+t \sin t) i+(\sin t-t \cos t) j, t>0$.
The curvature is $\square$
Solution
Solution Steps
Step 1: Find the Velocity and Acceleration Vectors
The position vector is given by \(\mathbf{r}(t) = (\cos t + t \sin t) \mathbf{i} + (\sin t - t \cos t) \mathbf{j}\).
First, find the velocity vector \(\mathbf{v}(t)\) by differentiating \(\mathbf{r}(t)\) with respect to \(t\):
\[
\mathbf{v}(t) = \frac{d}{dt}[(\cos t + t \sin t) \mathbf{i} + (\sin t - t \cos t) \mathbf{j}] = (-t \cos t) \mathbf{i} + (t \sin t) \mathbf{j}
\]
Next, find the acceleration vector \(\mathbf{a}(t)\) by differentiating \(\mathbf{v}(t)\) with respect to \(t\):
\[
\mathbf{a}(t) = \frac{d}{dt}[(-t \cos t) \mathbf{i} + (t \sin t) \mathbf{j}] = (-\cos t - t \sin t) \mathbf{i} + (\sin t + t \cos t) \mathbf{j}
\]
Step 2: Calculate the Magnitude of the Velocity
The magnitude of the velocity vector \(|\mathbf{v}(t)|\) is:
\[
|\mathbf{v}(t)| = \sqrt{(-t \cos t)^2 + (t \sin t)^2} = \sqrt{t^2 \cos^2 t + t^2 \sin^2 t} = \sqrt{t^2} = t
\]
Step 3: Calculate the Normal Component of the Acceleration
The normal component of the acceleration \(a_N\) is given by:
\[
a_N = \sqrt{|\mathbf{a}(t)|^2 - \left(\frac{\mathbf{a}(t) \cdot \mathbf{v}(t)}{|\mathbf{v}(t)|}\right)^2}
\]
First, calculate \(\mathbf{a}(t) \cdot \mathbf{v}(t)\):
\[
\mathbf{a}(t) \cdot \mathbf{v}(t) = [(-\cos t - t \sin t)(-t \cos t) + (\sin t + t \cos t)(t \sin t)]
\]
\[
= t \cos^2 t + t^2 \sin t \cos t + t \sin^2 t + t^2 \sin t \cos t = t (\cos^2 t + \sin^2 t) + 2t^2 \sin t \cos t = t + 2t^2 \sin t \cos t
\]
Now, calculate \(|\mathbf{a}(t)|^2\):
\[
|\mathbf{a}(t)|^2 = (-\cos t - t \sin t)^2 + (\sin t + t \cos t)^2
\]
\[
= \cos^2 t + 2t \sin t \cos t + t^2 \sin^2 t + \sin^2 t + 2t \sin t \cos t + t^2 \cos^2 t
\]
\[
= (\cos^2 t + \sin^2 t) + 2t \sin t \cos t + t^2 (\sin^2 t + \cos^2 t) + 2t \sin t \cos t
\]
\[
= 1 + 4t \sin t \cos t + t^2
\]
Substitute these into the formula for \(a_N\):
\[
a_N = \sqrt{1 + 4t \sin t \cos t + t^2 - \left(\frac{t + 2t^2 \sin t \cos t}{t}\right)^2}
\]
\[
= \sqrt{1 + 4t \sin t \cos t + t^2 - (1 + 2t \sin t \cos t)^2}
\]
\[
= \sqrt{1 + 4t \sin t \cos t + t^2 - (1 + 4t \sin t \cos t + 4t^2 \sin^2 t \cos^2 t)}
\]
\[
= \sqrt{t^2 - 4t^2 \sin^2 t \cos^2 t}
\]
\[
= t \sqrt{1 - 4 \sin^2 t \cos^2 t}
\]
Step 4: Calculate the Curvature
The curvature \(\kappa\) is given by:
\[
\kappa = \frac{a_N}{|\mathbf{v}(t)|^2} = \frac{t \sqrt{1 - 4 \sin^2 t \cos^2 t}}{t^2} = \frac{\sqrt{1 - 4 \sin^2 t \cos^2 t}}{t}
\]
Step 5: Calculate the Radius of Curvature
The radius of curvature \(R\) is the reciprocal of the curvature:
\[
R = \frac{1}{\kappa} = \frac{t}{\sqrt{1 - 4 \sin^2 t \cos^2 t}}
\]
Final Answer
The curvature is \(\boxed{\kappa = \frac{\sqrt{1 - 4 \sin^2 t \cos^2 t}}{t}}\).
The radius of curvature is \(\boxed{R = \frac{t}{\sqrt{1 - 4 \sin^2 t \cos^2 t}}}\).