First, we need to determine the reduced pressure \( P_r \) and reduced volume \( v_r \) using the critical properties of oxygen. The critical temperature \( T_c \) and critical pressure \( P_c \) for oxygen are:
\[
T_c = 154.6 \, \text{K}, \quad P_c = 50.43 \, \text{bar}
\]
The reduced pressure \( P_r \) is given by:
\[
P_r = \frac{P}{P_c} = \frac{250 \, \text{bar}}{50.43 \, \text{bar}} = 4.958
\]
The specific volume \( v \) is given as \( 0.003 \, \text{m}^3/\text{kg} \). The critical specific volume \( v_c \) can be calculated using the critical properties:
\[
v_c = \frac{R T_c}{P_c} = \frac{0.2598 \, \text{kJ/(kg·K)} \times 154.6 \, \text{K}}{50.43 \, \text{bar}} = 0.7964 \, \text{m}^3/\text{kg}
\]
The reduced volume \( v_r \) is then:
\[
v_r = \frac{v}{v_c} = \frac{0.003 \, \text{m}^3/\text{kg}}{0.7964 \, \text{m}^3/\text{kg}} = 0.0038
\]
Using the generalized compressibility chart, we locate the point corresponding to \( P_r = 4.958 \) and \( v_r = 0.0038 \). From the chart, we find the compressibility factor \( Z \).
Assuming the compressibility factor \( Z \approx 0.85 \) (this value is estimated based on typical generalized compressibility charts for the given reduced properties).
The real gas equation is given by:
\[
P v = Z R T
\]
Solving for \( T \):
\[
T = \frac{P v}{Z R}
\]
Substituting the known values:
\[
T = \frac{250 \, \text{bar} \times 0.003 \, \text{m}^3/\text{kg}}{0.85 \times 0.2598 \, \text{kJ/(kg·K)}}
\]
Converting bar to kPa (1 bar = 100 kPa):
\[
T = \frac{250 \times 100 \, \text{kPa} \times 0.003 \, \text{m}^3/\text{kg}}{0.85 \times 0.2598 \, \text{kJ/(kg·K)}}
\]
\[
T = \frac{75 \, \text{kPa·m}^3/\text{kg}}{0.2208 \, \text{kJ/(kg·K)}}
\]
\[
T = 339.7 \, \text{K}
\]
For the ideal gas model, the compressibility factor \( Z = 1 \). Thus, the temperature is:
\[
T_{\text{ideal}} = \frac{P v}{R}
\]
Substituting the known values:
\[
T_{\text{ideal}} = \frac{250 \, \text{bar} \times 0.003 \, \text{m}^3/\text{kg}}{0.2598 \, \text{kJ/(kg·K)}}
\]
Converting bar to kPa:
\[
T_{\text{ideal}} = \frac{250 \times 100 \, \text{kPa} \times 0.003 \, \text{m}^3/\text{kg}}{0.2598 \, \text{kJ/(kg·K)}}
\]
\[
T_{\text{ideal}} = \frac{75 \, \text{kPa·m}^3/\text{kg}}{0.2598 \, \text{kJ/(kg·K)}}
\]
\[
T_{\text{ideal}} = 288.6 \, \text{K}
\]
The temperature of oxygen at 250 bar and a specific volume of \(0.003 \, \text{m}^3/\text{kg}\) is:
\[
\boxed{T = 339.7 \, \text{K}}
\]
Using the ideal gas model, the temperature is:
\[
\boxed{T_{\text{ideal}} = 288.6 \, \text{K}}
\]