The initial rotational kinetic energy \( K_i \) can be calculated using the formula:
\[ K_i = \frac{1}{2} I_i \omega_i^2 \]
where \( I_i = 248 \, \mathrm{kg \, m^2} \) and \( \omega_i = 1.00 \, \mathrm{rad/s} \).
\[ K_i = \frac{1}{2} \times 248 \, \mathrm{kg \, m^2} \times (1.00 \, \mathrm{rad/s})^2 \]
\[ K_i = 124 \, \mathrm{J} \]
Using the conservation of angular momentum, the initial angular momentum \( L_i \) is equal to the final angular momentum \( L_f \):
\[ L_i = I_i \omega_i = I_f \omega_f \]
where \( I_f = 1.40 \, \mathrm{kg \, m^2} \).
Solving for \( \omega_f \):
\[ \omega_f = \frac{I_i \omega_i}{I_f} \]
\[ \omega_f = \frac{248 \, \mathrm{kg \, m^2} \times 1.00 \, \mathrm{rad/s}}{1.40 \, \mathrm{kg \, m^2}} \]
\[ \omega_f = 177.1429 \, \mathrm{rad/s} \]
The final rotational kinetic energy \( K_f \) can be calculated using the formula:
\[ K_f = \frac{1}{2} I_f \omega_f^2 \]
\[ K_f = \frac{1}{2} \times 1.40 \, \mathrm{kg \, m^2} \times (177.1429 \, \mathrm{rad/s})^2 \]
\[ K_f = \frac{1}{2} \times 1.40 \, \mathrm{kg \, m^2} \times 31383.6735 \, \mathrm{(rad/s)^2} \]
\[ K_f = 21968.5714 \, \mathrm{J} \]
The increase in rotational kinetic energy \( \Delta K \) is:
\[ \Delta K = K_f - K_i \]
\[ \Delta K = 21968.5714 \, \mathrm{J} - 124 \, \mathrm{J} \]
\[ \Delta K = 21844.5714 \, \mathrm{J} \]
\(\boxed{21844.5714 \, \mathrm{J}}\)