The standard error is calculated using the formula:
\[
SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = \sqrt{\frac{9900^2}{8} + \frac{8400^2}{18}}
\]
Calculating the variances:
\[
s_1^2 = 9900^2 = 98010000, \quad s_2^2 = 8400^2 = 70560000
\]
Now substituting the values:
\[
SE = \sqrt{\frac{98010000}{8} + \frac{70560000}{18}} = \sqrt{12251250 + 3920000} = \sqrt{16171250} \approx 4016.0
\]
The test statistic is calculated using the formula:
\[
t = \frac{\bar{x}_1 - \bar{x}_2}{SE} = \frac{57230 - 48920}{4016.0} \approx \frac{8310}{4016.0} \approx 2.067
\]
The degrees of freedom for Welch's t-test is calculated using:
\[
df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}}
\]
Calculating the components:
\[
\frac{s_1^2}{n_1} = \frac{98010000}{8} = 12251250, \quad \frac{s_2^2}{n_2} = \frac{70560000}{18} = 3920000
\]
Now substituting into the df formula:
\[
df = \frac{(12251250 + 3920000)^2}{\frac{(12251250)^2}{7} + \frac{(3920000)^2}{17}} = \frac{(16171250)^2}{\frac{149086056250000}{7} + \frac{15366400000000}{17}} \approx 18.0
\]
Using the t-distribution, the p-value is calculated as:
\[
P = 2(1 - T(|t|)) = 2(1 - T(2.067))
\]
Assuming \( T(2.067) \) gives a p-value of approximately \( 0.025 \):
\[
P \approx 2(1 - 0.975) = 0.05
\]
Since the p-value \( P \approx 0.05 \) is greater than the significance level \( \alpha = 0.01 \), we fail to reject the null hypothesis.
\(\boxed{\text{Fail to Reject Null Hypothesis}}\)