For the given reaction:
\[
\mathrm{N}_{2} + \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}
\]
The equilibrium constant expression in terms of partial pressures is:
\[
K_p = \frac{P_{\mathrm{NO}}^2}{P_{\mathrm{N}_2} P_{\mathrm{O}_2}}
\]
Given \( K_p = 0.100 \).
Assuming ideal gas behavior, the partial pressures can be related to molar concentrations using the ideal gas law. However, since we are given initial concentrations and not partial pressures, we will use the concentrations directly in the equilibrium expression.
Let \( x \) be the change in concentration of \(\mathrm{NO}\) at equilibrium. The initial concentrations are:
\[
[\mathrm{N}_2] = 0.100 \, \mathrm{M}, \quad [\mathrm{O}_2] = 0.100 \, \mathrm{M}, \quad [\mathrm{NO}] = 0 \, \mathrm{M}
\]
At equilibrium, the concentrations will be:
\[
[\mathrm{N}_2] = 0.100 - x, \quad [\mathrm{O}_2] = 0.100 - x, \quad [\mathrm{NO}] = 2x
\]
Substitute the equilibrium concentrations into the equilibrium expression:
\[
K_p = \frac{(2x)^2}{(0.100 - x)(0.100 - x)} = 0.100
\]
Simplify the equation:
\[
0.100 = \frac{4x^2}{(0.100 - x)^2}
\]
Take the square root of both sides:
\[
\sqrt{0.100} = \frac{2x}{0.100 - x}
\]
\[
0.3162 = \frac{2x}{0.100 - x}
\]
Rearrange to solve for \( x \):
\[
0.3162 (0.100 - x) = 2x
\]
\[
0.03162 - 0.3162x = 2x
\]
\[
0.03162 = 2.3162x
\]
\[
x = \frac{0.03162}{2.3162} \approx 0.0136
\]
The equilibrium concentration of \(\mathrm{NO}\) is:
\[
[\mathrm{NO}] = 2x = 2 \times 0.0136 = 0.0272 \, \mathrm{M}
\]