To solve the integral \(\int \frac{\sqrt{x}}{\sqrt{x}-6} \, dx\), we will use the substitution method. The hint suggests letting \(u\) be the denominator of the integrand. Therefore, we choose:
\[ u = \sqrt{x} - 6 \]
From the substitution \(u = \sqrt{x} - 6\), we can express \(\sqrt{x}\) as:
\[ \sqrt{x} = u + 6 \]
Squaring both sides, we get:
\[ x = (u + 6)^2 \]
Differentiate \(x = (u + 6)^2\) with respect to \(u\):
\[ \frac{dx}{du} = 2(u + 6) \]
Thus, \(dx\) can be expressed as:
\[ dx = 2(u + 6) \, du \]
Substitute \(u = \sqrt{x} - 6\), \(\sqrt{x} = u + 6\), and \(dx = 2(u + 6) \, du\) into the integral:
\[
\int \frac{\sqrt{x}}{\sqrt{x}-6} \, dx = \int \frac{u + 6}{u} \cdot 2(u + 6) \, du
\]
Simplify the integrand:
\[
= \int \frac{(u + 6) \cdot 2(u + 6)}{u} \, du = \int \frac{2(u + 6)^2}{u} \, du
\]
Expand \((u + 6)^2\):
\[
(u + 6)^2 = u^2 + 12u + 36
\]
Substitute back into the integral:
\[
= \int \frac{2(u^2 + 12u + 36)}{u} \, du
\]
Simplify the expression:
\[
= \int \left(2u + 24 + \frac{72}{u}\right) \, du
\]
Integrate each term separately:
\[
\int 2u \, du = u^2
\]
\[
\int 24 \, du = 24u
\]
\[
\int \frac{72}{u} \, du = 72 \ln |u|
\]
Combine the results:
\[
= u^2 + 24u + 72 \ln |u| + C
\]
Recall that \(u = \sqrt{x} - 6\). Substitute back:
\[
= (\sqrt{x} - 6)^2 + 24(\sqrt{x} - 6) + 72 \ln |\sqrt{x} - 6| + C
\]
The indefinite integral is:
\[
\boxed{(\sqrt{x} - 6)^2 + 24(\sqrt{x} - 6) + 72 \ln |\sqrt{x} - 6| + C}
\]