First, calculate the initial moles of hydrocyanic acid (HCN) in the solution. Use the formula:
\[
\text{moles of HCN} = \text{volume (L)} \times \text{molarity (M)}
\]
Given:
- Volume of HCN = 27.4 mL = 0.0274 L
- Molarity of HCN = 0.329 M
\[
\text{moles of HCN} = 0.0274 \, \text{L} \times 0.329 \, \text{M} = 0.0090146 \, \text{mol}
\]
Next, calculate the moles of potassium hydroxide (KOH) added to the solution. Use the formula:
\[
\text{moles of KOH} = \text{volume (L)} \times \text{molarity (M)}
\]
Given:
- Volume of KOH = 29.9 mL = 0.0299 L
- Molarity of KOH = 0.452 M
\[
\text{moles of KOH} = 0.0299 \, \text{L} \times 0.452 \, \text{M} = 0.0135148 \, \text{mol}
\]
The reaction between HCN and KOH is:
\[
\text{HCN} + \text{KOH} \rightarrow \text{KCN} + \text{H}_2\text{O}
\]
Since KOH is in excess, all HCN will react. Calculate the remaining moles of KOH:
\[
\text{Remaining moles of KOH} = \text{moles of KOH} - \text{moles of HCN} = 0.0135148 \, \text{mol} - 0.0090146 \, \text{mol} = 0.0045002 \, \text{mol}
\]
The remaining KOH contributes to the concentration of OH\(^-\) ions. Calculate the concentration of OH\(^-\) ions in the total volume of the solution:
Total volume = 27.4 mL + 29.9 mL = 57.3 mL = 0.0573 L
\[
[\text{OH}^-] = \frac{\text{Remaining moles of KOH}}{\text{Total volume (L)}} = \frac{0.0045002 \, \text{mol}}{0.0573 \, \text{L}} = 0.07855 \, \text{M}
\]
Calculate the pOH using the concentration of OH\(^-\):
\[
\text{pOH} = -\log_{10}([\text{OH}^-]) = -\log_{10}(0.07855) = 1.104
\]
Finally, calculate the pH:
\[
\text{pH} = 14 - \text{pOH} = 14 - 1.104 = 12.896
\]
\[
\boxed{\text{pH} = 12.896}
\]