First, we convert each force from polar coordinates to Cartesian coordinates using the formulas:
Fx=Fcos(θ)Fy=Fsin(θ)
For F1=800N at 145∘:
F1x=800cos(145∘)=800cos(145∘)=800×(−0.8192)=−655.4NF1y=800sin(145∘)=800sin(145∘)=800×0.5736=458.9N
For F2=700N at 215∘:
F2x=700cos(215∘)=700cos(215∘)=700×(−0.8192)=−573.4NF2y=700sin(215∘)=700sin(215∘)=700×(−0.5736)=−401.5N
For F3=900N at 290∘:
F3x=900cos(290∘)=900cos(290∘)=900×0.3420=307.8NF3y=900sin(290∘)=900sin(290∘)=900×(−0.9397)=−845.7N
For F4=600N at 340∘:
F4x=600cos(340∘)=600cos(340∘)=600×0.9397=563.8NF4y=600sin(340∘)=600sin(340∘)=600×(−0.3420)=−205.2N
Step 2: Sum the Cartesian Components
Next, we sum the x-components and y-components of all forces:
∑Fx=F1x+F2x+F3x+F4x=−655.4−573.4+307.8+563.8=−357.2N∑Fy=F1y+F2y+F3y+F4y=458.9−401.5−845.7−205.2=−993.5N
Step 3: Calculate the Magnitude of the Resultant Force
Finally, we calculate the magnitude of the resultant force using the Pythagorean theorem:
Fresultant=(∑Fx)2+(∑Fy)2=(−357.2)2+(−993.5)2Fresultant=127,584.84+987,052.25=1,114,637.09≈1055N