The distance \(d\) in parsecs (pc) can be calculated from the parallax \(p\) in arcseconds using the formula:
\[ d = \frac{1}{p} \]
Given \(p = 0.094 \, \text{arcseconds}\):
\[ d = \frac{1}{0.094} \approx 10.6383 \, \text{pc} \]
Step 3: Calculating Luminosity
The luminosity \(L\) of a star can be calculated using the inverse square law for flux:
\[ F = \frac{L}{4 \pi d^2} \]
Rearranging to solve for \(L\):
\[ L = F \cdot 4 \pi d^2 \]
Substituting the given values:
\[ L = (4.19 \times 10^{-9} \, \mathrm{W/m^2}) \cdot 4 \pi (10.6383 \, \text{pc})^2 \]
Step 4: Converting Distance to Meters
1 parsec (pc) is approximately \(3.086 \times 10^{16} \, \text{m}\):
\[ d = 10.6383 \, \text{pc} \times 3.086 \times 10^{16} \, \text{m/pc} \approx 3.282 \times 10^{17} \, \text{m} \]
Step 5: Final Calculation of Luminosity
Substituting the distance in meters:
\[ L = (4.19 \times 10^{-9} \, \mathrm{W/m^2}) \cdot 4 \pi (3.282 \times 10^{17} \, \text{m})^2 \]
\[ L \approx (4.19 \times 10^{-9}) \cdot 4 \pi (1.076 \times 10^{35}) \]
\[ L \approx (4.19 \times 10^{-9}) \cdot (1.351 \times 10^{36}) \]
\[ L \approx 5.658 \times 10^{27} \, \text{W} \]