(1) Draw a free body diagram of the body, \( m \).
Free Body Diagram
↑ x
|
m
----o----
| |
| k |
|-------| c
|
↓
-----
y(t)
\(\boxed{\text{See the diagram above.}}\)
(2) Derive an equation of motion using Newton's law of motion.
Applying Newton's second law
The equation of motion for the system can be written as:
\( m\ddot{x} + c(\dot{x} - \dot{y}) + k(x - y) = 0 \)
\(\boxed{m\ddot{x} + c(\dot{x} - \dot{y}) + k(x - y) = 0}\)
(3) Determine the undamped natural frequency, \( \omega_{n} \).
Formula for undamped natural frequency
\( \omega_n = \sqrt{\frac{k}{m}} \)
Calculation
\( \omega_n = \sqrt{\frac{350 \times 10^3 \text{ N/m}}{1000 \text{ kg}}} = \sqrt{350} \text{ rad/s} \approx 18.71 \text{ rad/s} \)
\(\boxed{\omega_n \approx 18.71 \text{ rad/s}}\)
(4) Determine the period of the base excitation, \( \tau \).
Relationship between wavelength, speed, and period
\( \tau = \frac{\lambda}{v} \)
Calculation
\( v = 50 \text{ km/h} = \frac{50 \times 1000}{3600} \text{ m/s} \approx 13.89 \text{ m/s} \)
\( \tau = \frac{5 \text{ m}}{13.89 \text{ m/s}} \approx 0.36 \text{ s} \)
\(\boxed{\tau \approx 0.36 \text{ s}}\)
(5) Determine the frequency of the base excitation, \( \omega \).
Relationship between period and frequency
\( \omega = \frac{2\pi}{\tau} \)
Calculation
\( \omega = \frac{2\pi}{0.36 \text{ s}} \approx 17.45 \text{ rad/s} \)
\(\boxed{\omega \approx 17.45 \text{ rad/s}}\)
(6) Determine the frequency ratio, \( r \).
Definition of frequency ratio
\( r = \frac{\omega}{\omega_n} \)
Calculation
\( r = \frac{17.45 \text{ rad/s}}{18.71 \text{ rad/s}} \approx 0.93 \)
\(\boxed{r \approx 0.93}\)
(7) Determine the amplitude of the vehicle, \( X \).
Given formula
\( \left|\frac{X}{Y}\right|=\left[\frac{1+(2 \zeta r)^{2}}{\left(1-r^{2}\right)^{2}+(2 \zeta r)^{2}}\right]^{1 / 2} \)
Calculation
\( \left|\frac{X}{Y}\right|=\left[\frac{1+(2 \times 0.5 \times 0.93)^{2}}{\left(1-0.93^{2}\right)^{2}+(2 \times 0.5 \times 0.93)^{2}}\right]^{1 / 2} \approx \left[\frac{1+0.8649}{0.0180+0.8649}\right]^{1/2} \approx 1.38 \)
\( X = 1.38 \times Y = 1.38 \times 50 \text{ mm} = 69 \text{ mm} \)
\(\boxed{X \approx 69 \text{ mm}}\)
\( \text{Free Body Diagram: See the diagram above.} \)
\( m\ddot{x} + c(\dot{x} - \dot{y}) + k(x - y) = 0 \)
\( \omega_n \approx 18.71 \text{ rad/s} \)
\( \tau \approx 0.36 \text{ s} \)
\( \omega \approx 17.45 \text{ rad/s} \)
\( r \approx 0.93 \)
\( X \approx 69 \text{ mm} \)