Questions: A reaction vessel initially contains 0.456 atm H2, 0.539 atm S2, and 5.18 atm H2S. After equilibrium is established, the pressure of H2 is 0.833 atm. Calculate Kp. Give your answer to 3 significant figures. 2 H2(g) + S2(g) ↔ 2 H2S(g)

A reaction vessel initially contains 0.456 atm H2, 0.539 atm S2, and 5.18 atm H2S. After equilibrium is established, the pressure of H2 is 0.833 atm. Calculate Kp. Give your answer to 3 significant figures.

2 H2(g) + S2(g) ↔ 2 H2S(g)
Transcript text: A reaction vessel initially contains $0.456 \mathrm{~atm} \mathrm{H}_{2}, 0.539 \mathrm{~atm} \mathrm{~S}_{2}$, and $5.18 \mathrm{~atm} \mathrm{H}_{2} \mathrm{~S}$. After equilibrium is established, the pressure of $\mathrm{H}_{2}$ is 0.833 atm . Calculate $K_{\mathrm{p}}$. Give your answer to 3 significant figures. \[ 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \]
failed

Solution

failed
failed

Solution Steps

Step 1: Write the balanced chemical equation and initial conditions

The balanced chemical equation is: \[ 2 \mathrm{H}_{2}(\mathrm{~g}) + \mathrm{S}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \]

Initial pressures:

  • $\mathrm{H}_{2}$: $0.456 \mathrm{~atm}$
  • $\mathrm{S}_{2}$: $0.539 \mathrm{~atm}$
  • $\mathrm{H}_{2} \mathrm{~S}$: $5.18 \mathrm{~atm}$
Step 2: Determine the change in pressure for each species

Let the change in pressure of $\mathrm{H}_{2}$ be $x$. Since the reaction consumes $2 \mathrm{H}_{2}$ for every $1 \mathrm{S}_{2}$ and produces $2 \mathrm{H}_{2} \mathrm{~S}$, the changes in pressure are:

  • $\mathrm{H}_{2}$: $-2x$
  • $\mathrm{S}_{2}$: $-x$
  • $\mathrm{H}_{2} \mathrm{~S}$: $+2x$

Given that the equilibrium pressure of $\mathrm{H}_{2}$ is $0.833 \mathrm{~atm}$, we can write: \[ 0.456 - 2x = 0.833 \]

Step 3: Solve for \( x \)

Solving the equation for $x$: \[ 0.456 - 2x = 0.833 \implies -2x = 0.833 - 0.456 \implies -2x = 0.377 \implies x = -0.1885 \]

Step 4: Calculate equilibrium pressures

Using $x = -0.1885$:

  • $\mathrm{H}_{2}$: $0.456 - 2(-0.1885) = 0.456 + 0.377 = 0.833 \mathrm{~atm}$ (matches given equilibrium pressure)
  • $\mathrm{S}_{2}$: $0.539 - (-0.1885) = 0.539 + 0.1885 = 0.7275 \mathrm{~atm}$
  • $\mathrm{H}_{2} \mathrm{~S}$: $5.18 + 2(-0.1885) = 5.18 - 0.377 = 4.803 \mathrm{~atm}$
Step 5: Write the expression for \( K_{\mathrm{p}} \)

The equilibrium constant \( K_{\mathrm{p}} \) for the reaction is given by: \[ K_{\mathrm{p}} = \frac{(\mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}})^2}{(\mathrm{P}_{\mathrm{H}_{2}})^2 (\mathrm{P}_{\mathrm{S}_{2}})} \]

Step 6: Substitute equilibrium pressures into the expression

Substitute the equilibrium pressures: \[ K_{\mathrm{p}} = \frac{(4.803)^2}{(0.833)^2 (0.7275)} \]

Step 7: Calculate \( K_{\mathrm{p}} \)

Perform the calculation: \[ K_{\mathrm{p}} = \frac{23.0736}{0.6941 \times 0.7275} = \frac{23.0736}{0.5051} \approx 45.69 \]

Final Answer

\[ \boxed{K_{\mathrm{p}} = 45.7} \]

Was this solution helpful?
failed
Unhelpful
failed
Helpful