Using the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \), we can find \( \cos x \):
\[ \cos x = \sqrt{1 - \sin^2 x} = \sqrt{1 - \left(\frac{3}{8}\right)^2} = \sqrt{1 - \frac{9}{64}} = \sqrt{\frac{55}{64}} = \frac{\sqrt{55}}{8} \approx 0.9270 \]
Using the double angle formula for sine, \( \sin(2x) = 2 \sin x \cos x \):
\[ \sin(2x) = 2 \cdot \frac{3}{8} \cdot \frac{\sqrt{55}}{8} = \frac{3\sqrt{55}}{32} \approx 0.6953 \]
Using the double angle formula for cosine, \( \cos(2x) = \cos^2 x - \sin^2 x \):
\[ \cos(2x) = \left(\frac{\sqrt{55}}{8}\right)^2 - \left(\frac{3}{8}\right)^2 = \frac{55}{64} - \frac{9}{64} = \frac{46}{64} = \frac{23}{32} \approx 0.7188 \]
Using the definition of tangent, \( \tan(2x) = \frac{\sin(2x)}{\cos(2x)} \):
\[ \tan(2x) = \frac{\frac{3\sqrt{55}}{32}}{\frac{23}{32}} = \frac{3\sqrt{55}}{23} \approx 0.9673 \]
\[ \sin(2x) \approx 0.6953, \quad \cos(2x) \approx 0.7188, \quad \tan(2x) \approx 0.9673 \]
Thus, the final answers are: \[ \boxed{\sin(2x) \approx 0.6953, \quad \cos(2x) \approx 0.7188, \quad \tan(2x) \approx 0.9673} \]
Oops, Image-based questions are not yet availableUse Solvely.ai for full features.
Failed. You've reached the daily limit for free usage.Please come back tomorrow or visit Solvely.ai for additional homework help.