Questions: μ = x^4 y + y^2 z^3
x = r s e^t
y = r s^2 e^-t
z = r^2 s sin t
find ∂u/∂s when r = α, Δ = 1 and t = 0
(sin x)' = cos x
(cos x)' = -sin x
sin 0 = 0
cos 0 = 1
Transcript text: \[
\mu=x^{4} y+y^{2} z^{3} \quad \begin{array}{l}
x=r s e^{t} \\
y=r s^{2} e^{-t} \\
z=r^{2} s \sin t
\end{array}
\]
find $\frac{\partial u}{\partial s}$ when $r=\alpha, \Delta=1$ and $t=0$
\[
\begin{array}{l}
(\sin x)^{\prime}=\cos x \\
(\cos x)^{\prime}=-\sin x \\
\sin 0=0 \\
\cos 0=1
\end{array}
\]
Solution
Solution Steps
To find \(\frac{\partial \mu}{\partial s}\), we need to use the chain rule and substitute the given expressions for \(x\), \(y\), and \(z\). Then, we evaluate the partial derivative at the specified values of \(r\), \(\Delta\), and \(t\).
Substitute \(x\), \(y\), and \(z\) into \(\mu\).
Compute the partial derivative \(\frac{\partial \mu}{\partial s}\).
Evaluate the derivative at \(r = \alpha\), \(\Delta = 1\), and \(t = 0\).
Step 1: Substitute \(x\), \(y\), and \(z\) into \(\mu\)
Given:
\[
\mu = x^4 y + y^2 z^3
\]
Substitute:
\[
x = r s e^t, \quad y = r s^2 e^{-t}, \quad z = r^2 s \sin t
\]
into \(\mu\):
\[
\mu = (r s e^t)^4 (r s^2 e^{-t}) + (r s^2 e^{-t})^2 (r^2 s \sin t)^3
\]
Simplify:
\[
\mu = r^5 s^6 e^{3t} + r^8 s^7 e^{-2t} \sin^3 t
\]
Step 2: Compute the partial derivative \(\frac{\partial \mu}{\partial s}\)