Questions: μ = x^4 y + y^2 z^3 x = r s e^t y = r s^2 e^-t z = r^2 s sin t find ∂u/∂s when r = α, Δ = 1 and t = 0 (sin x)' = cos x (cos x)' = -sin x sin 0 = 0 cos 0 = 1

μ = x^4 y + y^2 z^3  
x = r s e^t  
y = r s^2 e^-t  
z = r^2 s sin t  

find ∂u/∂s when r = α, Δ = 1 and t = 0  

(sin x)' = cos x  
(cos x)' = -sin x  
sin 0 = 0  
cos 0 = 1
Transcript text: \[ \mu=x^{4} y+y^{2} z^{3} \quad \begin{array}{l} x=r s e^{t} \\ y=r s^{2} e^{-t} \\ z=r^{2} s \sin t \end{array} \] find $\frac{\partial u}{\partial s}$ when $r=\alpha, \Delta=1$ and $t=0$ \[ \begin{array}{l} (\sin x)^{\prime}=\cos x \\ (\cos x)^{\prime}=-\sin x \\ \sin 0=0 \\ \cos 0=1 \end{array} \]
failed

Solution

failed
failed

Solution Steps

To find \(\frac{\partial \mu}{\partial s}\), we need to use the chain rule and substitute the given expressions for \(x\), \(y\), and \(z\). Then, we evaluate the partial derivative at the specified values of \(r\), \(\Delta\), and \(t\).

  1. Substitute \(x\), \(y\), and \(z\) into \(\mu\).
  2. Compute the partial derivative \(\frac{\partial \mu}{\partial s}\).
  3. Evaluate the derivative at \(r = \alpha\), \(\Delta = 1\), and \(t = 0\).
Step 1: Substitute \(x\), \(y\), and \(z\) into \(\mu\)

Given: \[ \mu = x^4 y + y^2 z^3 \] Substitute: \[ x = r s e^t, \quad y = r s^2 e^{-t}, \quad z = r^2 s \sin t \] into \(\mu\): \[ \mu = (r s e^t)^4 (r s^2 e^{-t}) + (r s^2 e^{-t})^2 (r^2 s \sin t)^3 \] Simplify: \[ \mu = r^5 s^6 e^{3t} + r^8 s^7 e^{-2t} \sin^3 t \]

Step 2: Compute the partial derivative \(\frac{\partial \mu}{\partial s}\)

Differentiate \(\mu\) with respect to \(s\): \[ \frac{\partial \mu}{\partial s} = \frac{\partial}{\partial s} \left( r^5 s^6 e^{3t} + r^8 s^7 e^{-2t} \sin^3 t \right) \] \[ \frac{\partial \mu}{\partial s} = 6 r^5 s^5 e^{3t} + 7 r^8 s^6 e^{-2t} \sin^3 t \]

Step 3: Evaluate the derivative at \(r = \alpha\), \(t = 0\)

Substitute \(r = \alpha\) and \(t = 0\) into \(\frac{\partial \mu}{\partial s}\): \[ \frac{\partial \mu}{\partial s} \bigg|_{r = \alpha, t = 0} = 6 \alpha^5 s^5 e^{3 \cdot 0} + 7 \alpha^8 s^6 e^{-2 \cdot 0} \sin^3 0 \] Since \(\sin 0 = 0\) and \(e^0 = 1\): \[ \frac{\partial \mu}{\partial s} \bigg|_{r = \alpha, t = 0} = 6 \alpha^5 s^5 \]

Final Answer

\[ \boxed{\frac{\partial \mu}{\partial s} \bigg|_{r = \alpha, t = 0} = 6 \alpha^5 s^5} \]

Was this solution helpful?
failed
Unhelpful
failed
Helpful