Questions: Multiply as indicated. If possible, simplify any radical expressions that appear in the product. Assume that all variables represent positive real numbers.
∛x(∛(250 x^2) - ∛x)
Transcript text: Multiply as indicated. If possible, simplify any radical expressions that appear in the product. Assume that all variables represent positive real numbers.
\[
\sqrt[3]{x}\left(\sqrt[3]{250 x^{2}}-\sqrt[3]{x}\right)
\]
Solution
Solution Steps
To solve this problem, we need to distribute the cube root of \(x\) across the terms inside the parentheses. This involves multiplying the cube roots and simplifying the resulting expressions. We will use the property that \(\sqrt[3]{a} \cdot \sqrt[3]{b} = \sqrt[3]{a \cdot b}\).
Step 1: Distributing the Cube Root
We start with the expression:
\[
\sqrt[3]{x}\left(\sqrt[3]{250 x^{2}} - \sqrt[3]{x}\right)
\]
Using the property of cube roots, we distribute \(\sqrt[3]{x}\) across the terms inside the parentheses:
\[
\sqrt[3]{x} \cdot \sqrt[3]{250 x^{2}} - \sqrt[3]{x} \cdot \sqrt[3]{x}
\]
Step 2: Simplifying Each Term
The first term simplifies as follows:
\[
\sqrt[3]{x} \cdot \sqrt[3]{250 x^{2}} = \sqrt[3]{250 x^{3}} = 5 \cdot \sqrt[3]{2} \cdot x
\]
The second term simplifies to:
\[
\sqrt[3]{x} \cdot \sqrt[3]{x} = \sqrt[3]{x^2}
\]
Thus, the expression becomes:
\[
5 \cdot \sqrt[3]{2} \cdot x - \sqrt[3]{x^2}
\]
Step 3: Final Simplification
Combining the terms, we have:
\[
\sqrt[3]{x^2} + 5 \cdot \sqrt[3]{2} \cdot x
\]
Final Answer
The simplified expression is:
\[
\boxed{-\sqrt[3]{x^2} + 5 \cdot \sqrt[3]{2} \cdot x}
\]