First, we need to calculate the number of moles of each reactant.
For methane (\(\mathrm{CH}_4\)):
\[
\text{Molar mass of } \mathrm{CH}_4 = 12.01 + 4 \times 1.008 = 16.042 \, \text{g/mol}
\]
\[
\text{Moles of } \mathrm{CH}_4 = \frac{5.00 \, \text{g}}{16.042 \, \text{g/mol}} = 0.3116 \, \text{mol}
\]
For chlorine (\(\mathrm{Cl}_2\)):
\[
\text{Molar mass of } \mathrm{Cl}_2 = 2 \times 35.453 = 70.906 \, \text{g/mol}
\]
\[
\text{Moles of } \mathrm{Cl}_2 = \frac{14.5 \, \text{g}}{70.906 \, \text{g/mol}} = 0.2045 \, \text{mol}
\]
The balanced chemical equation is:
\[
\mathrm{CH}_4 + 4 \mathrm{Cl}_2 \rightarrow \mathrm{CCl}_4 + 4 \mathrm{HCl}
\]
From the equation, 1 mole of \(\mathrm{CH}_4\) reacts with 4 moles of \(\mathrm{Cl}_2\).
Calculate the required moles of \(\mathrm{Cl}_2\) for the available \(\mathrm{CH}_4\):
\[
\text{Required moles of } \mathrm{Cl}_2 = 0.3116 \, \text{mol} \times 4 = 1.2464 \, \text{mol}
\]
Since we only have 0.2045 moles of \(\mathrm{Cl}_2\), \(\mathrm{Cl}_2\) is the limiting reactant.
\(\boxed{\text{The limiting reactant is } \mathrm{Cl}_2}\)
Using the limiting reactant (\(\mathrm{Cl}_2\)), we calculate the maximum mass of \(\mathrm{CCl}_4\) that can be formed.
From the balanced equation, 4 moles of \(\mathrm{Cl}_2\) produce 1 mole of \(\mathrm{CCl}_4\).
Calculate the moles of \(\mathrm{CCl}_4\) that can be formed:
\[
\text{Moles of } \mathrm{CCl}_4 = \frac{0.2045 \, \text{mol} \, \mathrm{Cl}_2}{4} = 0.05113 \, \text{mol}
\]
Calculate the mass of \(\mathrm{CCl}_4\):
\[
\text{Molar mass of } \mathrm{CCl}_4 = 12.01 + 4 \times 35.453 = 153.823 \, \text{g/mol}
\]
\[
\text{Mass of } \mathrm{CCl}_4 = 0.05113 \, \text{mol} \times 153.823 \, \text{g/mol} = 7.864 \, \text{g}
\]
\(\boxed{\text{Maximum mass} = 7.864 \, \text{g}}\)
\(\boxed{\text{The limiting reactant is } \mathrm{Cl}_2}\)
\(\boxed{\text{Maximum mass} = 7.864 \, \text{g}}\)